Лекции по физике 4a | страница 31
Теперь мы можем показать (наконец-то!), что скорость распространения рентгеновских лучей в куске угля, например, не больше, чем скорость света, хотя фазовая скорость больше скорости света. Чтобы сделать это, нужно найти соотношение dw/dk, которое мы вычислим дифференцированием формулы
(48.14): dk/dw=1/c+a/(w>2c). А групповая скорость равна обратной величине, т. е.
что меньше, чем с! Таким образом, хотя фазы могут бежать быстрее скорости света, модулирующие сигналы движутся медленнее, и в этом состоит разрешение кажущегося парадокса!
Разумеется, в простейшем случае w=kc групповая скорость dw/dkтоже равна с, т. е. когда все фазы движутся с одинаковой скоростью, естественно, и групповая скорость будет той же самой.
§ 5. Амплитуда вероятности частиц
Рассмотрим еще один необычайно интересный пример фазовой скорости. Он относится к области квантовой механики. Известно, что амплитуда вероятности найти частицу в данном месте изменяется при некоторых обстоятельствах в пространстве и времени (давайте возьмем одно измерение) следующим образом:
где w — частота, связанная с классической энергией, E=hw, a k— волновое число, которое связано с импульсом соотношением р=hk. Мы говорим, что частица имеет определенный импульс р, если волновое число в точности равно k, т. е. если бежит идеальная волна повсюду с одинаковой амплитудой. Выражение (48.19) дает амплитуду вероятности, но если мы возьмем квадрат абсолютной величины, то получим относительную вероятность обнаружения частицы как функцию положения и времени. В данном случае она равна постоянной, что означает вероятность обнаружить частицу в любом месте, Рассмотрим теперь такой случай, когда известно, что обнаружить частицу в каком-то месте более вероятно, чем в других местах. Подобную картину мы описываем волной, которая имеет максимум в данном месте и сходит на нет по мере удаления в стороны (фиг. 48.6).
Фиг. 48.6. Локализованный волновой пакет,
(Это не то же самое, что изображено на фиг. 48.1, где волна имеет целый ряд максимумов, но сними вполне можно расправиться, сложив несколько волн с приблизительно одинаковыми значениями wи k. Таким способом можно избавиться от всех максимумов, кроме одного.)
При этих обстоятельствах, поскольку квадрат выражения (48.19) представляет вероятность найти частицу в некотором месте, мы знаем, что в данный момент больше шансов найти частицу вблизи центра «колокола», где амплитуда максимальна.