Лекции по физике 4a | страница 31



Теперь мы можем показать (наконец-то!), что скорость рас­пространения рентгеновских лучей в куске угля, например, не больше, чем скорость света, хотя фазовая скорость больше скорости света. Чтобы сделать это, нужно найти соотношение dw/dk, которое мы вычислим дифференцированием формулы

(48.14): dk/dw=1/c+a/(w>2c). А групповая скорость равна обрат­ной величине, т. е.


что меньше, чем с! Таким образом, хотя фазы могут бежать бы­стрее скорости света, модулирующие сигналы движутся мед­леннее, и в этом состоит разрешение кажущегося парадокса!

Разумеется, в простейшем случае w=kc групповая скорость dw/dkтоже равна с, т. е. когда все фазы движутся с одинако­вой скоростью, естественно, и групповая скорость будет той же самой.

§ 5. Амплитуда вероятности частиц


Рассмотрим еще один необычайно интересный пример фа­зовой скорости. Он относится к области квантовой механики. Известно, что амплитуда вероятности найти частицу в данном месте изменяется при некоторых обстоятельствах в пространстве и времени (давайте возьмем одно измерение) следующим обра­зом:


где w — частота, связанная с классической энергией, E=hw, a kволновое число, которое связано с импульсом соотно­шением р=hk. Мы говорим, что частица имеет определенный импульс р, если волновое число в точности равно k, т. е. если бежит идеальная волна повсюду с одинаковой амплитудой. Выражение (48.19) дает амплитуду вероятности, но если мы возьмем квадрат абсолютной величины, то получим относитель­ную вероятность обнаружения частицы как функцию поло­жения и времени. В данном случае она равна постоянной, что означает вероятность обнаружить частицу в любом месте, Рассмотрим теперь такой случай, когда известно, что обна­ружить частицу в каком-то месте более вероятно, чем в других местах. Подобную картину мы описываем волной, которая имеет максимум в данном месте и сходит на нет по мере удале­ния в стороны (фиг. 48.6).

Фиг. 48.6. Локализованный волновой пакет,

(Это не то же самое, что изображено на фиг. 48.1, где волна имеет целый ряд максимумов, но сними вполне можно расправиться, сложив несколько волн с при­близительно одинаковыми значениями wи k. Таким способом можно избавиться от всех максимумов, кроме одного.)

При этих обстоятельствах, поскольку квадрат выражения (48.19) представляет вероятность найти частицу в некотором месте, мы знаем, что в данный момент больше шансов найти ча­стицу вблизи центра «колокола», где амплитуда максимальна.