Лекции по физике 5a | страница 43



заряды. Если вообразить, что заряд на поверх­ности пластины занимает какой-то тонкий слой (фиг. 8.4), то поле будет меняться от нуля на внутренней границе слоя до Е>0 в пространстве снаружи пластин. Среднее поле, действующее на поверхностные заряды, равно Е>0/2. Вот отчего в (8.18) стоит множитель >1/>2.


Вы должны обратить внимание на то, что, рассчитывая вир­туальную работу, мы предположили, что заряд конденсатора постоянен, что конденсатор не был электрически связан с дру­гими предметами и полный заряд не мог изменяться.

Фиг. 8.4. Поле у поверхности проводника меняется от нуля до E>0=s/e>0, когда пересечен слой по­верхностного заряда. 1 — проводящая пластина; 2 — слой поверхностного заряда.

А теперь пусть мы предположили, что при виртуальных пе­ремещениях конденсатор поддерживается при постоянной раз­ности потенциалов. Тогда мы должны были бы взять


и вместо (8.15) мы бы имели


что приводит к силе, равной по величине той, что была получена в уравнении (8.15) (так как V = Q/C), но с противоположным знаком!

Конечно, сила, действующая между пластинами конденса­тора, не меняет свой знак, когда мы отсоединяем конденсатор от источника электричества. Кроме того, мы знаем, что две плас­тины с разноименными электрическими зарядами должны при­тягиваться. Принцип виртуальной работы во втором случае был применен неправильно, мы не приняли во внимание виртуаль­ную работу, производимую источником, заряжающим конден­сатор. Это значит, что для того, чтобы удержать потенциал при постоянном значении V, когда меняется емкость, источник элект­ричества должен снабдить конденсатор зарядом VDC. Но этот заряд поступает при потенциале V, так что работа, выполняе­мая электрической системой, удерживающей заряд постоянным, равна V>2DC. Механическая работа .FDz плюс эта электрическая работа V>2DC вместе приводят к изменению полной энергии кон­денсатора на >1/>2V>2DC. Поэтому на механическую работу, как и прежде, приходится FDz=->1/>2 V>2DC.

§ 3. Электростатическая энергия ионного кристалла

Рассмотрим теперь применение понятия электростатической энергии в атомной физике. Мы не можем запросто измерять силы, действующие между атомами, но часто нас интересует разница в энергиях двух расстановок атомов (к примеру, энергия химических изменений). Так как атомные силы в основе своей — это силы электрические, то и химическая энергия в главной своей части — это просто электростатиче­ская энергия.

Рассмотрим, например, электростатическую энергию ионной решетки. Ионный кристалл, такой, как NaCl, состоит из поло­жительных и отрицательных ионов, которые можно считать жесткими сферами. Они электрически притягиваются, пока не соприкоснутся; затем вступает в дело сила отталкивания, кото­рая быстро возрастает, если мы попытаемся сблизить их теснее.