Лекции по физике 5a | страница 37
Чтобы мысль была яснее, рассмотрим только одномерный случай. Представим себе коллоидную частицу в виде очень большого (по сравнению с атомом!) шара; тогда мы можем малую часть ее поверхности считать плоскостью. (Вообще, пытаясь понять новое явление, лучше разобраться в нем на чрезвычайно упрощенной модели; и только потом, поняв суть проблемы, стоит браться за более точные расчеты.)
Предположим, что распределение ионов создает плотность зарядов р(х) и электрический потенциал j, связанные электростатическим законом С>2j =-r/e>0, или в одномерном случае законом
(7.28)
Как бы распределились ионы в таком поле, если бы потенциал подчинялся этому уравнению? Узнать это можно при помощи принципов статистической механики. Вопрос в том, как определить j, чтобы вытекающая из статистической механики плотность заряда тоже удовлетворяла бы условию (7.28)?
Согласно статистической механике (см. вып. 4, гл. 40), частицы, пребывая в тепловом равновесии в поле сил, распределяются так, что плотность nчастиц с координатой xдается формулой
(7.29)
где U(x) — потенциальная энергия, k— постоянная Больцмана, а Т — абсолютная температура.
Предположим, что у всех ионов один и тот же электрический заряд, положительный или отрицательный. На расстоянии х от поверхности коллоидной частицы положительный ион будет обладать потенциальной энергией
Плотность положительных ионов тогда равна
а плотность отрицательных
Суммарная плотность заряда
или
(7.30)
Подставляя в (7.28), увидим, что потенциал j должен удовлетворять уравнению
(7.31)
Это уравнение решается в общем виде [помножьте обе его части на 2(dj/dx)и проинтегрируйте по х],но, продолжая упрощать задачу, мы ограничимся здесь только предельным случаем малых потенциалов или высоких температур Т. Малость j отвечает разбавленному раствору. Показатель экспоненты тогда мал, и можно взять
(7.32)
Уравнение (7.31) дает
(7.33)
Заметьте, что теперь в правой части стоит знак плюс (решение не колебательное, а экспоненциальное).
Фиг. 7.7. Изменение потенциала у поверхности коллоидной частицы. D— дебаевская длина.
Общее решение (7.33) имеет вид
(7.34)
где
(7.35)
Постоянные А и В определяются из добавочных условий. В нашем случае В должно быть нулем, иначе потенциал для больших х обратится в бесконечность. Итак,
(7.36)
где А — потенциал при x=0 на поверхности коллоидной частицы.
Потенциал убывает в eраз при удалении на D(фиг. 7.7). Число Dназывается дебаевской длиной;