Лекции по физике 5a | страница 24



(6.29)

Проинтегрировав а по всей поверхности, мы сможем прове­рить наши расчеты. Мы должны получить весь наведенный заряд, т. е. -q.


Еще один вопрос: действует ли на точечный заряд сила? Да, потому что наведенные на плоскости отрицательные заряды должны его притягивать. А раз мы знаем, каковы эти поверх­ностные заряды [по формуле (6.29)], то можем с помощью интег­рирования подсчитать силу, действующую на наш положитель­ный заряд. Но мы ведь знаем также, что сила, действующая на него, в точности такая, какой она была бы, если бы вместо плоскости был один только отрицательный зеркальный заряд, потому что поля поблизости от них в обоих случаях одинаковы. Точечный заряд тем самым испытывает силу притяжения к пло­скости, равную


(6.30)

Мы определили эту силу очень легко, без интегрирования по отрицательным зарядам.

§ 9. Точечный заряд у проводящей сферы

А какие еще поверхности, кроме плоскости, имеют простое решение? Самая простая из них — сфера. Попробуем определить поля вокруг металлической сферы с точечным зарядом qвблизи нее (фиг. 6.11). Придется поискать простую физическую задачу, для которой сфера есть эквипотенциальная поверхность. Если мы просмотрим те задачи, которые уже решены, то увидим, что у поля двух неравных точечных зарядов одна из эквипотен­циальных поверхностей как раз и есть сфера. Отметим себе это! Если мы как следует подберем положение заряда-изображения и нужную его величину, может быть, тогда мы и сможем подо­гнать эквипотенциальную поверхность к нашей сфере.


Фиг. 6.11. Точечный заряд qнаводит на за­земленной проводящей сфере заряды, которые создают поле, такое же, как у заряда-изображе­ния, помещенного в ука­занной точке.


Это и впрямь может быть сделано, если действовать по следующему рецепту.

Положим, что вы хотите, чтобы эквипотенциальная поверх­ность была сферой радиуса а с центром, отстоящим от заряда qна расстояние b. Поместите изображение заряда величины q'=-q(a/b) на радиусе, проходящем через заряд на расстоянии a>2/bот центра. Потенциал сферы пусть будет нуль.

Математически причина состоит в том, что сфера есть гео­метрическое место точек, отношение расстояний которых от двух данных точек постоянно. Как следует из фиг. 6.11, потен­циал в точке Р от зарядов qи q' пропорционален сумме


и будет равен нулю во всех точках, для которых


Если мы помещаем q' на расстоянии а>2!bот центра, то отноше­ние r>2/r>1 равно постоянной величине a/b. Тогда если


(6.31)

то сфера станет эквипотенциалью. Потенциал ее на самом деле будет равен нулю.