Лекции по физике 7 | страница 69
§ 7. Момент количества движения в квантовой механике
Я уже приводил вам соотношение между магнитным моментом и моментом количества движения. Очень хорошо. Но что означает магнитный момент и момент количества движения в Квантовой механике? Оказывается, что для полной уверенности в том, что они означают в квантовой механике, лучше определять вещи, подобные магнитному моменту, через другие понятия, такие, как энергия. Магнитный момент легко определить через энергию, ибо энергия магнитного момента в магнитном поле равна в классической теории—m·В. Следовательно, в квантовой механике необходимо принять следующее определение. Если мы вычисляем энергию системы в магнитном поле и видим, что она пропорциональна напряженности (для малых полей), то коэффициент пропорциональности мы будем называть магнитным моментом в направлении поля. (Нам сейчас в нашей работе не требуется особой элегантности и мы можем продолжать думать о магнитном моменте в обычном, т. е. в каком-то отношении классическом смысле.)
Теперь мне бы хотелось обсудить понятие момента количества движения в квантовой механике, или, вернее, характеристики того, что в квантовой механике называется моментом количества движения. Видите ли, при переходе к законам нового рода нельзя предполагать, что каждое слово будет в точности означать то же, что и раньше. Подумав, вы можете сказать: «Постойте, а ведь я знаю, что такое момент количества движения. Это штука, которую измеряет момент силы». Но что такое момент силы? В квантовой механике у нас должно быть новое определение старых величин. Поэтому законно было бы назвать ее каким-то другим именем, вроде «углоквантового момента», или чем-то в этом духе, и уж это был бы момент количества движения «по-квантовомеханически». Однако если в квантовой механике мы можем найти величину, которая, когда система становится достаточно большой, идентична нашему старому понятию момента количества движения, то никакой пользы от изобретения новых слов нет. Ее тоже можно называть моментом количества движения. В этом понимании та странная вещь, которую мы собираемся описать, и есть момент количества движения. Это характеристика, в которой мы для больших систем узнаем момент количества движения классической механики.
Прежде всего возьмем систему с сохраняющимся моментом количества движения наподобие атома в пустом пространстве. Такая система (подобно Земле, вращающейся вокруг собственной оси) может крутиться вокруг любой оси, какую бы нам ни вздумалось выбрать. Для данной величины спина возможно много различных «состояний» с одной и той же энергией, причем каждое из них соответствует какому-то направлению оси момента количества движения. Таким образом, в классической механике с данным моментом количества движения связано бесконечное число возможных состояний с одной и той же энергией.