Лекции по физике 8a | страница 17
Фиг. 8.1. Совокупность базисных состояний для двух протонов и электрона.
Конечно, на самом деле у электрона возле протона имеется множество состояний, потому что их комбинация может существовать в виде одного из возбуждённых состояний атома водорода. Но нас сейчас не интересует это разнообразие состояний, мы будем рассматривать лишь случай, когда атом водорода пребывает в наинизшем состоянии — своем основном состоянии,— и пренебрежем на время спином электрона. Мы просто предположим, что для всех наших состояний спин электрона направлен вверх по оси z.
Чтобы убрать электрон из атома водорода, требуется 13,6 эв энергии. Столько же энергии — очень много по нашим теперешним масштабам — понадобится и на то, чтобы электрон оказался на полпути между протонами (коль скоро сами протоны сильно удалены друг от друга). Так что по классическим понятиям электрону немыслимо перескочить от одного протона к другому. Однако в квантовой механике это возможно, хоть и не очень вероятно. Существует некая малая амплитуда того, что электрон уйдет от одного протона к другому. Тогда в первом приближении каждое из наших базисных состояний |1> и |2> будет иметь энергию Е>0, равную просто сумме энергий атома водорода и протона. Матричные элементы Н>11и H>22 гамильтониана мы можем принять приближенно равными Е>0. Другие матричные элементы Н>12и Н>21, представляющие собой амплитуды перехода электрона туда и обратно, мы опять запишем в виде -А.
Вы видите, что это та же игра, в какую мы играли в последних двух главах. Если пренебречь способностью электрона перескакивать туда и обратно, то два состояния будут иметь в точности одинаковую энергию. Эта энергия, однако, расщепляется на два энергетических уровня из-за того, что электрон может переходить туда и назад, и чем больше вероятность перехода, тем больше расщепление. Стало быть, два уровня энергии системы равны Е>0+А и Е>0-А, и состояния, у которых такие энергии, даются уравнениями (8.7).
Из нашего решения мы видим, что если протон и водородный ион как-то расположить близко один к другому, то электрон не останется подле одного протона, а будет перескакивать от протона к протону и обратно. Если вначале он был близ одного из протонов, то затем он начнет колебаться туда и назад между состояниями |1> и |2>, давая решение, меняющееся во времени. Чтобы получить решение, отвечающее самой низкой энергии (которое не меняется со временем), необходимо, чтобы вначале система обладала одинаковыми амплитудами пребывания электрона возле каждого из протонов. Кстати, вспомните, что электронов отнюдь не два; мы совсем не утверждаем, что вокруг каждого протона имеется электрон. Имеется только