Лекции по физике 8a | страница 13
Это та величина g>II, которая стоит в (7.40), и она дает амплитуду того, что переход из состояния |I> в состояние |II> произойдет за время Т. Вероятность Р (I®II) такого перехода равна
|g>II|>2, или
Интересно начертить эту вероятность при фиксированном времени Tкак функцию частоты полости, чтобы посмотреть, насколько чувствительна она к частотам близ резонансной частоты w>0. Кривая Р (I®II) показана на фиг. 7.7.
Фиг. 7.7. Вероятность перехода для молекулы аммиака как функция частоты.
(Вертикальная шкала была подогнана так, чтобы в пике была единица, для этого разделили на величину вероятности при w=w>0.) С подобными кривыми мы встречались в теории дифракции, так что они должны быть вам знакомы. Кривая довольно резко падает до нуля при
(w-w>0)=2p/T и никогда при больших отклонениях частоты снова не достигает заметной величины. Почти вся площадь под кривой лежит в пределах ±p/T. Можно показать [с помощью формулы
что площадь под кривой равна 2p/Tи совпадает с площадью выделенного штрихованной линией прямоугольника.
Посмотрим, что это дает для реального мазера. Возьмем разумное время пребывания молекулы аммиака в полости, скажем 1 мсек. Тогда для f>0=24000 Мгц можно подсчитать, что вероятность падает до нуля при отклонениях (f-f>0)/f>0=1/f>0T, т. е. порядка 5·10>-8. Очевидно, что для заметных вероятностей перехода частоты должны очень точно совпадать с w>0. Этот эффект является основой той большой точности, которой можно достичь в «атомных» часах, работающих на принципе мазера.
§ 6. Поглощение света
Наше изложение применимо и к более общему случаю, чем аммиачный мазер. Мы ведь изучали поведение молекулы под влиянием электрического поля независимо от того, заключено оно в полость или нет. Просто можно было направить пучок «света» — микроволновой частоты — на молекулу и искать вероятность испускания или поглощения. Наши уравнения ничуть не хуже применимы и к этому случаю, но только лучше переписать их на языке