Апология математика | страница 61
Не думаю, чтобы всё это красноречие могло особенно успокоить математиков. Язык обоих авторов изобилует чудовищными преувеличениями, и они оба игнорируют весьма очевидные различия. В случае Хогбена это вполне естественно, так как он по всеобщему мнению не математик; под "математикой" он понимает ту математику, которая доступна его разумению, - я называю её "школьной" математикой. Нельзя не признать, что эта математика имеет многочисленные приложения, которые, если угодно, можно было бы назвать "социальными". Хогбен всячески подкреплял их многочисленными интересными экскурсиями в историю математических открытий. Такой прием следует признать удачным, так как он позволяет Хогбену довести до сознания многих читателей его книги, которые не были и никогда не будут математиками, что в математике есть много больше, чем они думали. Вместе с тем Хогбен едва ли понимает, что такое "настоящая" математика (это становится ясно каждому, кто прочитает, что Хогбен пишет о теореме Пифагора, об Евклиде и Эйнштейне), и не питает к ней тёплых чувств (не скрывая этого). "Настоящая" математика для Хогбена - не более чем объект сочувственной жалости.
В случае Уайтхеда трудность заключается не в недостатке понимания или сочувствия: преисполненный энтузиазмом, он забывает об отличительных особенностях математики, которые ему хорошо знакомы. Математика, которая оказывает "огромное влияние" на "повседневные занятия людей" и "организацию обществ", - это математика не Уайтхеда, а Хогбена. Математика, которую можно использовать "для обычных целей обычными людьми", незначительна, а та математика, которую могут использовать экономисты или социологи, вряд ли поднимается до уровня колледжа. Математика Уайтхеда может оказать глубокое влияние на астрономию или физику, значительное - на философию (высокое мышление одного рода всегда с большей вероятностью влияет на высокое мышление другого рода), но на всём остальном сказывается весьма слабо. "Огромное влияние" математика Уайтхеда оказывает не на людей вообще, а на самого Уайтхеда.
28
Итак, существует две математики. Существует "настоящая" математика "настоящих" математиков и то, что я назвал бы, за отсутствием лучшего слова, "тривиальной" математикой. Существование тривиальной математики можно было бы оправдать ссылкой на Хогбена или других авторов его школы, но для реальной математики, которую надлежит оправдать как искусство, если её вообще можно оправдать, такой апологии не существует. В этой точке зрения, обычно разделяемой математиками, нет ничего парадоксального или необычного.