«Если», 1995 № 03 | страница 60
А какое это может иметь значение, могут спросить читатели, разве у нас есть способ добраться когда-нибудь на опыте до таких невообразимо малых промежутков времени? Уже добрались, отвечают физики. Правда, не сразу: сначала теоретики назвали другую величину, тоже очень маленькую: 10>-22 секунды. Если время меняется на столь малую величину, то меняются и связанные с ним характеристики пространства, а значит, и энергия — ведь ее величину можно выразить через координаты и время. Причем из теории следует, что, чем меньше время, тем больше величина соответствующей ему энергии.
10 >22 секунды — это как раз такая продолжительность времени, при которой энергии хватает, чтобы буквально «из ничего», иными словами, из вакуума возник электрон. Правда, судьба этой частицы-призрака будет незавидной: пройдет еще 10>-22 секунды, и он исчезнет, бесследно растворится в породившем его вакууме.
Я так и думал, скажет нетерпеливый читатель, ни до какой опытной проверки тут не добраться! Это верно, но только отчасти. Заметить такую частицу действительно невозможно: слишком непродолжительно время ее жизни, его не хватает, чтобы она успела вступить во взаимодействие с какими-либо другими стабильно существующими элементарными частицами. Поэтому эти ненаблюдаемые частицы, которые в изобилии порождаются вакуумом, физики назвали виртуальными, т. е. возможными.
Однако вакуум буквально «кипит» такими частицами, и хотя никакую из них невозможно обнаружить по отдельности, все вместе, коллективно они в состоянии повлиять на результат опыта. И эти коллективные свойства «призрачных» виртуальных частиц были действительно обнаружены во многих экспериментах. Вот какими странными свойствами, оказывается, обладает время на малых масштабах!
А теперь вспомним о еще более коротком промежутке времени — планковском времени — 10>-32 секунд. Какой энергии он соответствует? С помощью формул квантовой механики эту величину подсчитать нетрудно — оказывается, этой энергии достаточно, чтобы из вакуума (из «ничего») возникла Вселенная, подобная нашей. Здесь сходятся интересы обеих физических дисциплин — теории относительности и квантовой механики. Решая уравнения Эйнштейна, наш соотечественник
А. А. Фридман показал, что Вселенная возникла около 10 миллиардов лет назад в результате явления, которое физики назвали Большой Взрыв. А поскольку размеры ее были в эти мгновения микроскопически малыми, то исследовать ее свойства на этой стадии следует с помощью методов квантовой механики.