Шаги за горизонт | страница 65



>+. Паули считал, что правила квантования Бора — Зоммерфельда можно применять, имея дело с хорошо определенной моделью периодических орбит, как у водорода, но никак не с моделью такой сложности, как, скажем, у атома гелия, где вокруг ядра вращаются два электрона; ибо тогда мы потонем в чудовищных математических трудностях и осложнениях задачи трех тел. С одной стороны, если бы мы имели два фиксированных центра, а именно два ядра водорода и один электрон, то движение электрона оставалось бы однозначно-периодическим движением и поддавалось расчету. В остальном эта модель уже достаточно сложна; ее можно использовать поэтому для проверки приложимости старых правил к подобному промежуточному случаю. Работая с этой моделью, Паули установил, что расчеты действительно не приводят к истинной величине энергии для Н>2>+. В результате возникли сомнения в применимости классической механики для вычисления дискретных стационарных состояний, и внимание все прочнее приковывалось к переходам между ними. Стало ясно, что для полного объяснения явлений недостаточно только вычислить энергию, нужно было вычислить вероятности переходов. Из работы Эйнштейна 1918 года мы знали, что вероятности переходов определены как величины, зависящие от двух состояний, начального и конечного. В своем принципе соответствия Бор установил, что эти вероятности переходов: можно оценить интенсивностями высших гармонических составляющих в Фурье-разложении электронной орбиты. Его идея сводилась к тому, что каждая линия соответствует одной Фурье-компоненте в разложении движения электрона; из квадрата этой амплитуды можно вычислить интенсивность. Эта интенсивность, естественно, не стоит ни в какой непосредственной связи с эйнштейновской вероятностью перехода, но определенное соотношение между ними все же существует, так что интенсивность позволяет приблизительно вычислить эйнштейновские величины. Итак, внимание все более смещалось с энергии стационарных состояний к вероятности перехода из одного стационарного состояния в другое, и Крамере первым начал серьезно исследовать дисперсию атома, связывая поведение модели Бора под воздействием излучения с эйнштейновскими коэффициентами.

Составляя дисперсионную формулу, Крамере руководствовался той идеей, что составляющим Фурье-разложения соответствуют виртуальные гармонические осцилляторы в атоме. Потом Крамере обсудил со мной те явления рассеивания, при которых частота рассеиваемого света отличается от частоты падающего света. Квант рассеиваемого света здесь отличается от кванта падающего света потому, что в момент рассеяния атом переходит из одного состояния в другое. Подобные явления были только что открыты в линейчатых спектрах Раманом. При попытке сформулировать выражение для дисперсии в этих случаях приходилось говорить не только об Эйнштейновых вероятностях перехода, но еще и об амплитудах перехода; нужно было приписать этим амплитудам определенные фазы, помножить между собою две амплитуды — скажем, амплитуду, ведущую от состояния