«Если», 1997 № 10 | страница 7
И все же сахарианские спектакли слишком схематичны, чтобы служить подспорьем для изучения современных обществ, хотя и могут пролить некий дополнительный свет на эволюцию относительно несложных культур… Сейчас экспериментаторы занимаются загадкой бурного расцвета и падения цивилизации североамериканских индейцев анасази (1000–1300 гг. н. э.) в сотрудничестве с группой археологов. Один из них, Джордж Гамермен из Southern Illinois University, с помощью страны Сахарии нащупал-таки связи между урожайностью маиса и колебаниями численности анасази, после чего признал эту индуктивную модель «недурственным интеллектуальным протезом».
Так вот, более сложной модели человеческого общества, построенной по принципу «снизу вверх», на данный момент попросту не существует. Но, может, в будущем?
Возможно, вы придерживаетесь иного мнения, однако мне придется вас разочаровать. Начнем с простенького примера: существуют четыре человека, связанные эмоциональными отношениями «нравится — не нравится». Причем, субъекту А нравится субъект Б и не нравятся В и Г; Б терпеть не может А, равнодушен к В и обожает Г; В любит всех, а Г — никого. Вопрос: какие члены этой группы неплохо относятся друг к другу? Выяснить это очень просто, нарисовав геометрическую схему, называемую графом, где субъекты обозначены точками, а отношения приязни — направленными стрелками. Проделав эту несложную процедуру, вы наглядно убедитесь, что взаимности в данной группе не существует!
Если перейти на язык математики, то задача, известная как ПРОБЛЕМА КЛИКИ, состоит в том, чтобы найти наибольшее подмножество М’ исходного множества М, все элементы которого связаны симметричным отношением ВЗАИМНОЙ ПРИЯЗНИ (для нашего четырехэлементного М, на котором заданы вышеописанные транзитивные отношения, М представляет собой так называемое пустое множество). Когда множество М содержит сотни элементов, на бумаге уже не разберешься, и приходится писать программу для компьютера… А если тысячи?
На основании накопленного опыта математики авторитетно утверждают, что существуют РАЗУМНО ОГРАНИЧЕННЫЕ ПРОБЛЕМЫ, для которых тем не менее невозможно построить алгоритм, вычисляющий абсолютно точный ответ за РАЗУМНЫЙ ПЕРИОД ВРЕМЕНИ. Если вы спросите меня, каков «неразумный» период времени, я отвечу так: тот, по истечении которого точное решение задачи уже никому не требуется! Конкретно же это может означать что угодно — от нескольких лет до…