Нейтрино - призрачная частица атома | страница 79



Допустим, необходимо измерить импульс электрона, чтобы в итоге выяснить, выполняется ли точно закон сохранения импульса для системы, частью которой он является. С этой целью направим пучок фотонов в направлении движения электрона. Время от времени один из фотонов сталкивается с электроном и отскакивает от него. Зная направление, в котором возвращается отскочивший фотон, и время, за которое он прошел путь туда и обратно, можно определить положение электрона в любой момент времени. Проделав такую операцию несколько раз, мы узнаем его положение в различные моменты времени и из полученных данных рассчитываем его скорость и импульс. Единственная неприятность состоит в том, что фотон имеет, вероятно, такие же размеры, как электрон, и когда он сталкивается с электроном, тот отскакивает. Путь, который проходит электрон под обстрелом фотонов, существенно отличен от пути, который он проходил бы в отсутствие фотонов. Поэтому, хотя положение электрона в различные моменты времени известно с большой точностью, никакого представления о его скорости в отсутствие фотонов нет.

Попытаемся обойти эту трудность, используя фотоны со все меньшей и меньшей энергией, которые настолько слабы, что существенно не изменят движение электрона В этом случае можно было бы надеяться рассчитать и определить точное положение и импульс электрона К сожалению, чем меньше энергия фотона, тем больше длина его волны, а чем больше длина волны, тем реже он отскакивает от электрона. Более вероятно, что вместо этого фотон обогнет электрон и отскочит от него, если это вообще случится, совершенно в другом направлении. В результате, чем точнее определяется импульс, тем труднее становится судить о положении электрона.

В 1927 году Гейзенберг после тщательного анализа установил, что импульс любой частицы можно определить с какой угодно точностью; но чем точнее определяется импульс, тем менее точно известно положение частицы, и наоборот, чем точнее определяется положение частицы, тем менее точно определяется импульс. Гейзенберг показал, что неточность в определении импульса (которая называется «неопределенностью» импульса и обозначается Δр), умноженная на неточность или неопределенность положения (Δx), всегда больше некоторой фиксированной величины для любой системы, будь то электрон или Солнце. Он получил соотношение

ΔрΔx ≥ h/2π,

где знак ≥ означает «больше или равно», π (греческая буква «пи») — хорошо известная постоянная, равная приблизительно 3,14159, a