Об эстетической природе фантазии | страница 22



Оригинальность этой теоремы, занимавшей в свое время ум Декарта, заключается в том, что чисто формальные доказательства оказываются здесь абсолютно бессильными, если они лишаются опоры на «интуитивное» соображение, имеющее ярко выраженный эстетический характер, — на соображения, вернее, на доводы, непосредственного чувства, которые сами по себе опять-таки никакому формально-логическому доказательству не поддаются и тем не менее лежали в основе исследований такого строгого математика, каким был Кеплер. Приводим этот оригинальный случай по изложению известного американского математика Д. Пойа. Называется он «изопериметрической теоремой». Суть теоремы, сформулированной Декартом, состоит в следующем. [251]

Сравнивая круг с несколькими другими геометрическими фигурами, мы убеждаемся, что он имеет наименьший периметр из других пяти или десяти фигур, обладающих равной площадью. Декарт составил таблицу, которая наглядно это показывает и выглядит так:

Периметры фигур равной площади:

Круг — 3,55

Квадрат — 4,00

Полукруг — 4,10

Равносторонний треугольник — 4,56


(и т. д. — не будем продолжать таблицу Декарта, где приведены десять фигур).

«Можем ли мы отсюда посредством индукции вывести, как, по-видимому, предлагает Декарт, что круг имеет наименьший периметр не только среди десяти перечисленных фигур, но и среди всех возможных фигур?» Никоим образом, — говорит Пойа. — Обобщение, полученное от десяти случаев, никогда не дает гарантии в том, что в одиннадцатом случае будет то же самое. Это давно известно философии. В данном случае мы столкнулись с проблемой всеобщности и необходимости вывода, базирующегося на ограниченном числе фактов. Кант, исходя из этой трудности, заключил, что ни одно понятие, выражающее «общее» в фактически наблюдаемых явлениях, не может претендовать на всеобщность и необходимость и всегда находится под угрозой той судьбы, которая постигла знаменитое суждение «все лебеди — белые».

Тем не менее, — продолжает Пойа, — Декарт, как и мы, рассматривающие изопериметрическую теорему, был почему-то убежден, что круг есть фигура с наименьшим отношением периметра к площади не только по сравнению с десятью перечисленными, но и по сравнению «со всеми возможными».

В самом деле, говорит Пойа, наше убеждение в этом настолько сильно, что мы не нуждаемся в продолжении ряда, в дальнейших сравнениях.

В чём тут дело? В чём отличие от другой сходной ситуации, например от такой: пойдем в лес, выберем наугад десять деревьев разных пород, измерим удельный вес древесины каждого из них и выберем дерево с наименьшим удельным весом древесины. Иными словами, мы сделали то же самое, что и с геометрическими — фигурами… Разумно ли на этом основании заключать и верить, что мы нашли дерево удельный вес которого [252] меньше удельного веса всех существующих и возможных деревьев, а не только тех, которые мы измерили и взвесили?