Омар Хайям | страница 106
В первой книге «Комментариев» рассматривается теория параллельных. Хайям вообще не сомневается в истинности классического постулата Евклида, однако считает его менее очевидным, чем ряд других евклидовских положений. Кроме того, он отвергает некоторые варианты доказательства.
Один из принципов Аристотеля Хайям принимает за исходный в собственной теории параллельных: «Две сходящиеся прямые линии пересекаются, и невозможно, чтобы две сходящиеся прямые линии расходились в направлении схождения». Каждое из двух утверждений, содержащихся в этом принципе, эквивалентно пятому постулату Евклида.
При помощи нового постулата Омар Хайям доказывает восемь теорем, последняя из которых по формулировке совпадает с пятым постулатом. Центральное место у Хайяма занимает исследование равнобедренного двупрямоугольника (четырехугольника с двумя прямыми углами при основании и равными боковыми сторонами). Равнобедренный двупрямоугольник разделяется своей осью симметрии на два трипрямоугольника. Относительно двух других углов двупрямаугольника, равных между собой, Хайям сначала предполагает, что они острые, затем, что они тупые, и оба допущения приводит к противоречию при помощи своего принципа. После установления существования прямоугольника он довольно просто доказывает пятый постулат.
Работы восточных геометров по теории параллельных, растянувшиеся почти на пятьсот лет и тесно связанные между собой, оказали значительное воздействие на позднейшие исследования. Идеи Хайяма и ат-Туси стали известны в Европе только в XVII веке. Выявленная и обоснованная ими связь пятого постулата Евклида с проблемой суммы углов четырехугольника, или, что равносильно этому, с вопросом о сумме углов треугольника, стала основной в дальнейших работах. Гипотезы и представления математиков Востока о свойствах рассматривавшихся ими четырехугольников в случае острого и тупого угла стали своего рода первыми теоремами неевклидовых геометрий Лобачевского и Римана (в первой из которых обосновывается гипотеза острого угла для этих четырехугольников, а во второй — гипотеза тупого угла). Работы Омара Хайяма стали одним из важных звеньев в цепи исследований, закончившихся созданием неевклидовой геометрии.