Характер физических законов | страница 66





Поэтому мы знаем, что если путь немножко изменить, то это в первом приближении не изменит действия. Нарисуем какой-нибудь путь, соединяющий точки А и В, и другой возможный путь следующего вида (см. рис. 27). Сначала мы перепрыгиваем сразу в близлежащую точку С, а затем движемся точно по такому же пути, как и раньше, до другой точки D, отстоящей от В на то же расстояние, что и С от А, поскольку оба пути абсолютно идентичны. Но, как мы только что установили, законы физики таковы, что общая величина действия при движении по пути АСDВ в первом приближении совпадает с действием при движении по первоначальному пути А В - в силу принципа минимума, если АВ - реальный путь.

Но это еще не все. Действие при движении по исходному пути от A до В должно совпадать с действием при движении от С до A, если мир не меняется при пространственных переносах, так как разница между этими двумя путями лишь в пространственном сдвиге. Поэтому если принцип симметрии относительно пространственных переносов справедлив, то действие при движении по пути от А до В должно быть таким же, как и на пути от С до D. Однако для настоящего движения действие для сложной траектории ACDB почти в точности совпадает с действием для траектории АВ и, следовательно, с действием для одной своей части, от С до D. Но действие для сложного пути представляет собой сумму трех частей: действие для движения от A до С, от С до D и от D до В. Поэтому, вычитая равное из равного, мы увидим, что вклад от движения от А до С и от D до В должен в сумме давать нуль.

Но при движении по одному из этих отрезков мы движемся в одну сторону, а при движении по другому - в другую. Если теперь взять действие при движении от А до С и рассматривать его как эффект движения в одном направлении, а действие при движении от D к В - как действие при движении от В к D, но с другим знаком из-за противоположного направления движения, то мы увидим, что для обеспечения нужного равенства необходимо, чтобы действие при движении из А в С совпадало с действием при движении из В в D. Но это - изменение действия при маленьком шаге из В в D. Эта величина - изменение действия при маленьком шаге вправо - одна и та же и в начале (от А к С) и в конце (от В к D). Значит, у нас имеется величина, которая не меняется со временем, если только справедлив принцип минимума и выполняется принцип симметрии относительно пространственных переносов.

Эта, не изменяющаяся во времени величина (изменения действия при малом шаге в том или ином направлении), оказывается в точности равной количеству движения, о котором говорилось в предыдущей лекции. Такова взаимосвязь между законами симметрии и законами сохранения, вытекающая из того, что законы подчиняются принципу наименьшего действия. А они подчиняются ему, как оказывается, потому, что вытекают из законов квантовой механики. Вот поэтому-то я и сказал, что в конечном счете связь между законами симметрии и законами сохранения объясняется законами квантовой механики.