Ответы на экзаменационные билеты по эконометрике | страница 43
29. Соизмеримые показатели тесноты связи
К соизмеримым показателям тесноты связи относятся:
1) коэффициенты частной эластичности;
2) стандартизированные частные коэффициенты регрессии;
3) частный коэффициент детерминации.
Если факторные переменные имеют несопоставимые единицы измерения, то связь между ними измеряется с помощью соизмеримых показателей тесноты связи. С помощью соизмеримых показателей тесноты связи характеризуется степень зависимости между факторной и результативной переменными в модели множественной регрессии.
Коэффициент частной эластичности рассчитывается по формуле:
где
– среднее значение факторной переменной xi по выборочной совокупности,
– среднее значение результативной переменной у по выборочной совокупности;
– первая производная результативной переменной у по факторной переменной х.
Частный коэффициент эластичности измеряется в процентах и характеризует объём изменения результативной переменной у при изменении на 1 % от среднего уровня факторной переменной xiпри условии постоянства всех остальных факторных переменных, включённых в модель регрессии.
Для линейной модели регрессии частный коэффициент эластичности рассчитывается по формуле:
где βi– коэффициент модели множественной регрессии.
Для того чтобы рассчитать стандартизированные частные коэффициенты регрессии, необходимо построить модель множественной регрессии в стандартном (нормированном) масштабе. Это означает, что все переменные, включённые в модель регрессии, стандартизируются с помощью специальных формул. Посредством процесса стандартизации точкой отсчёта для каждой нормированной переменной устанавливается её среднее значение по выборочной совокупности. При этом в качестве единицы измерения стандартизированной переменной принимается её среднеквадратическое отклонение β.
Факторная переменная х переводится в стандартизированный масштаб по формуле:
где xij – значение переменной xj в i-том наблюдении;
G(xj) – среднеквадратическое отклонение факторной переменной xi;
Результативная переменная у переводится в стандартизированный масштаб по формуле:
где G(y) – среднеквадратическое отклонение результативной переменной у.
Стандартизированные частные коэффициенты регрессии характеризуют, на какую долю своего среднеквадратического отклонения G(y) изменится результативная переменная у при изменении факторной переменной х на величину своего среднеквадратического отклонения G(x), при условии постоянства всех остальных факторных переменных, включённых в модель регрессии.