Ответы на экзаменационные билеты по эконометрике | страница 26



5) на основании третьего и четвёртого условий часто добавляется пятое условие, заключающееся в том, что случайная ошибка модели регрессии – это случайная величина, подчиняющейся нормальному закону распределения с нулевым математическим ожиданием и дисперсией G2: εi~N(0, G2).

Если выдвинутые предположения справедливы, то оценки неизвестных параметров модели парной регрессии, полученные методом наименьших квадратов, имеют наименьшую дисперсию в классе всех линейных несмещённых оценок, т. е. МНК-оценки можно считать эффективными оценками неизвестных параметров β0 и β1.

Если выдвинутые предположения справедливы для модели множественной регрессии, то оценки неизвестных параметров данной модели регрессии, полученные методом наименьших квадратов, имеют наименьшую дисперсию в классе всех линейных несмещённых оценок, т. е. МНК-оценки можно считать эффективными оценками неизвестных параметров β0…βn.

Для обозначения дисперсий МНК-оценок неизвестных параметров модели регрессии используется матрица ковариаций.

Матрицей ковариаций МНК-оценок параметров линейной модели парной регрессии называется выражение вида:

где

– дисперсия МНК-оценки параметра модели регрессии β0;

– дисперсия МНК-оценки параметра модели регрессии β1.

Матрицей ковариаций МНК-оценок параметров линейной модели множественной регрессии называется выражение вида:


где G2(ε) – это дисперсия случайной ошибки модели регрессии ε.

Для линейной модели парной регрессии дисперсии оценок неизвестных параметров определяются по формулам:

1) дисперсия МНК-оценки коэффициента модели регрессии β0:

2) дисперсия МНК-оценки коэффициента модели регрессии β1:

где G2(ε) – дисперсия случайной ошибки уравнения регрессии β;

G2(x) – дисперсия независимой переменой модели регрессии х;

n – объём выборочной совокупности.

В связи с тем, что на практике значение дисперсии случайной ошибки модели регрессии G2(ε) неизвестно, для вычисления матрицы ковариаций МНК-оценок применяют оценку дисперсии случайной ошибки модели регрессии S2(ε).

Для линейной модели парной регрессии оценка дисперсии случайной ошибки определяется по формуле:

где

– это остатки регрессионной модели, которые рассчитываются как

Тогда оценка дисперсии МНК-оценки коэффициента β0 линейной модели парной регрессии будет определяться по формуле:

Оценка дисперсии МНК-оценки коэффициента β1линейной модели парной регрессии будет определяться по формуле:

Для модели множественной регрессии общую формулу расчёта матрицы ковариаций МНК-оценок коэффициентов на основе оценки дисперсии случайной ошибки модели регрессии можно записать следующим образом: