Диофантов кинжал | страница 7



Е . И .. С ... Х .... Т - А .- У ..- Ж ...

H -. Р .-. Ф ..-

М -- В .-- Ю ..-.

Д -.. Л .-..

К -.- Я .-.

Г --. П .--.

О --- Й .--

Б -...

Ь -..

Ц -.-.

Ы -.-

З --..

Щ --.

Ч ---.

Ш ---

Одну посылку имеют две буквы, две посылки - четыре буквы, три посылки - восемь букв, четыре посылки - шестнадцать букв. Есть одна буква с пятью посылками, но это редкая буква "э", и такого знака в шифровке нет. Одна посылка - это столбец в блоке. У нас имеется один одностолбцовый блок, один двухстолбцовый, два - трехстолбцовых и два - четырехстолбцовых блока. А теперь рассмотрим шифровку более детально. Мы уже предположили с хорошей степенью надежности, что первая буква есть "у" или "в". Вероятно, последний блок - окончание. Оно одностолбцовое. При одной посылке это может быть либо буква "е", либо "т". Если это окончание, то скорее "е", чем "т". Hо с окончанием "е" сопрягается предлог "в", например "в дороге", "в свинарнике", но никак не у". С другой стороны, буква "в" в коде Морзе, как видно из таблицы, является трехпосылочной. И в шифровке первая буква трехстолбцовая, т.е. полное сов падение. Таким образом, исходя, из кода Морзе, мы получаем, что первая буква это "в", а последняя - "е". Итак, как видите, мы продвинулись достаточно далеко, мы знаем две буквы шифра, более того, мы установили, что столбцы 2 3 2 15 2 2 означают точку, а столбцы 4 4 4 4 4 4

4 означают тире. - Да, Холмс, я вижу, вы действительно не зря тратили время и, полагаю, действительно близки к цели. Hу, а, что означают остальные, тринадцать столбцов, вы можете уже сказать? - Да, могу. Либо точку, либо тире. Hо пока не умею отличить точки от тире. Структура столбца мне совершенно неясна. По какому принципу тройка чисел 3, 15, 2 отнесена к классу точек, а тройка 4, 4, 4 к классу тире - еще загадка. По всей видимости, Мариарти применил некоторое правило, с помощью которого любую последовательность натуральных чисел можно отнести к одному из классов. Говоря высоким математическим языком, он осуществил разбиение некоего множества натуральных чисел на два непересекающихся подмножества, и любая последовательность из одного подмножества есть знак точки, из другого - тире. Hо мы знаем уже четыре образца этого разбиения, и я почему-то уверен, что раскрытие разрешающего условия не представит больших трудностей. Так что, Ватсон, готовьте стену к приему манны Лутии а сиреневом.

Пятая беседа состоялась через одну или две недели. Холмс был возбужден в самой высшей степени, что так не соответствовало его облику сдержанного джентльмена. - Ватсон, у меня, кажется, появилась ужасная мысль. Почему 2-2-2 - да, а 4-4-4 - нет (да - точка, нет - тире)? Вчера, просматривая за завтраком утреннюю газету - о чем там говорилось, скажу после, - я подумал, а что... а что если эти двойки и четверки записать в виде: