Апология математики, или О математике как части духовной культуры | страница 49
2. Отношение ‘между’, связывающее тройки точек: из трёх точек одна может лежать или не лежать между двумя другими.
3-4. Отношение конгруэнтности отрезков и отношение конгруэнтности углов: два отрезка или два угла могут быть или не быть конгруэнтны друг другу. Когда-то в наших школах не боялись слова “конгруэнтны”; сейчас, к сожалению, там велено заменить это слово на слово “равны”. Почему “к сожалению”? А потому, что ведь имеется в виду отношение не между длинами отрезков или между величинами углов (и те, и другие действительно равны, если соответствующие отрезки или углы конгруэнтны), а между отрезками и между углами как геометрическими фигурами. А каждая сущность, геометрическая фигура в частности, может быть равна только самой себе.
Аксиоматическое построение геометрии не предполагает разъяснения того, чтбо такое точки, прямые и названные отношения. Вместо этого формулируются аксиомы, в которых указывается, каким законам подчиняются точки, прямые, инцидентность, отношение ‘между’, конгруэнтность отрезков и конгруэнтность углов. Из этих аксиом и выводятся теоремы геометрии. Говоря формально, аксиомы могут быть какими угодно, лишь бы они не противоречили друг другу. Но ежели мы желаем, чтобы теория описывала реальность, то, как уже отмечалось, и аксиомы, связывающие идеальные объекты и отношения теории, должны отражать свойства тех сущностей реального, физического мира, отражением каковых и служат указанные идеальные объекты и отношения, положенные в основу теории. В частности, отношение конгруэнтности геометрических фигур должно отражать возможность одной фигуры быть совмещённой с другой посредством перемещения.
На примере куздр, бокров и будлания мы попытались вкратце изложить суть аксиоматического метода. Несколько заключительных замечаний относительно этого примера. Заменим в вышеприведённых аксиомах (1) - (4) слово “куздра” на слово “точка”, слово “бокр” на слово “прямая”, слово “будлать” на выражение “лежать на”. Аксиома (4) превратится тогда в такое утверждение (!4): На каждой прямой лежат по меньшей мере две точки. Аналогично, аксиомы (1), (2) и (3) превратятся в утверждения (!1), (!2) и (!3), которые мы просим любезного читателя образовать самостоятельно. Утверждения (!1), (!2), (!3) и (!4) составляют в своей совокупности группу так называемых аксиом связи планиметрии, регулирующих то, как точки связаны с прямыми. Читатель может теперь перевести аксиому о параллельных на язык куздр: