Учебное пособие по курсу «Нейроинформатика» | страница 85



5678
Вычислять оценку+++
Интерпретировать ответ++
Вычислять градиент+
Подготовка к контрастированию+/–

Символ «+» означает, что в запросе, номер которого указан в первой строке колонки, возможность, задаваемая данным параметром, должна быть использована. Символ «–» — что связанная с данным параметром возможность не используется. Символы «+/–» означают, что запрос может, как использовать, так и не использовать данную возможность. Отметим, что подготовка к контрастированию может быть задействована, только если производится вычисление градиента, а вычисление градиента невозможно без вычисления оценки. Остальные параметры независимы.

Отбор примеров в обучающее множество, открытие сеанса работы с задачником должны выполняться учителем или контрастером. Исполнитель только организует перебор примеров в обучающем множестве.

При полной или частичной аппаратной реализации нейрокомпьютера компонент исполнитель эффективно реализуется аппаратно, по следующим причинам.

Исполнитель реализует исключительно связные функции по отношению к другим компонентам.

Исполняемые им запросы постоянны и не зависят от реализаций других компонентов нейрокомпьютера.

Этот компонент работает чаще, чем любой другой, и, как следствие, ускорение в работе исполнителя приводит к соизмеримому ускорению работы нейрокомпьютера.

Лекция 11.2, 12. Учитель

Этот компонент не является столь универсальным как задачник, оценка или нейронная сеть, поскольку существует ряд алгоритмов обучения жестко привязанных к архитектуре нейронной сети. Примерами таких алгоритмов могут служить обучение (формирование синаптической карты) сети Хопфилда [312], обучение сети Кохонена [ 31, 132] и ряд других аналогичных сетей. Однако в главе «Описание нейронных сетей» приводится способ формирования сетей, позволяющий обучать сети Хопфилда [312] и Кохонена [131, 132] методом обратного распространения ошибки. Описываемый в этой главе компонент учитель ориентирован в первую очередь на обучение двойственных сетей (сетей обратного распространения ошибки).

Что можно обучать методом двойственности

Как правило, метод двойственности (обратного распространения ошибки) используют для подстройки параметров нейронной сети. Однако, как было показано в главе «Описание нейронных сетей», сеть может вычислять не только градиент функции оценки по обучаемым параметрам сети, но и по входным сигналам сети. Используя градиент функции оценки по входным сигналам сети можно решать задачу, обратную по отношению к обучению нейронной сети.