Учебное пособие по курсу «Нейроинформатика» | страница 74
Если при составлении обучающего множества ответ на примеры определялся с некоторой погрешностью, то от сети следует требовать не точного воспроизведения ответа, а попадания в интервал заданной ширины. В этом случае интерпретатор ответа может выдать сообщение о правильности (попадании в интервал) ответа.
Другим, часто встречающимся случаем, является предсказание сетью принадлежности входного вектора одному из заданных классов. Такие задачи называют задачами классификации, а решающие их сети — классификаторами. В простейшем случае задача классификации ставится следующим образом: пусть задано N классов. Тогда нейросеть выдает вектор из N сигналов. Однако, нет единого универсального правила интерпретации этого вектора. Наиболее часто используется интерпретация по максимуму: номер нейрона, выдавшего максимальный по величине сигнал, является номером класса, к которому относится предъявленный сети входной вектор. Такие интерпретаторы ответа называются интерпретаторами, кодирующими ответ номером канала (номер нейрона — номер класса). Все интерпретаторы, использующие кодирование номером канала, имеют один большой недостаток — для классификации на N классов требуется N выходных нейронов. При большом N требуется много выходных нейронов для получения ответа. Однако существуют и другие виды интерпретаторов.
Двоичный интерпретатор. Основная идея двоичного интерпретатора — получение на выходе нейронной сети двоичного кода номера класса. Это достигается двухэтапной интерпретацией:
1. Каждый выходной сигнал нейронной сети интерпретируется как 1, если он больше (a+b)/2, и как 0 в противном случае.
2. Полученная последовательность нулей и единиц интерпретируется как двоичное число.
Двоичный интерпретатор позволяет интерпретировать N выходных сигналов нейронной сети как номер одного из 2>N классов.
Порядковый интерпретатор. Порядковый интерпретатор кодирует номер класса подстановкой. Отсортируем вектор выходных сигналов по возрастанию. Вектор, составленный из номеров нейронов последовательно расположенных в отсортированном векторе выходных сигналов, будет подстановкой. Если каждой подстановке приписать номер класса, то такой интерпретатор может закодировать N! классов используя N выходных сигналов.
Уровень уверенности
Часто при решении задач классификации с использованием нейронных сетей недостаточно простого ответа «входной вектор принадлежит