Учебное пособие по курсу «Нейроинформатика» | страница 46



• Массив комментариев. Таких массивов обычно только два — массив описания полей комментариев и массив комментариев. Массив описания полей комментариев — один на весь задачник, а массив комментариев — один на пример.

На рис. 1 приведено схематическое устройство задачника. Такое представление данных позволяет гибко использовать память. Однако следует учесть, что часть полей может переходить из одного массива в другой. Например, при исключении одного входного данного из использования (см. главу «Контрастер»), соответствующее ему поле переходит из массива входных данных в массив комментариев.

Лекция 8. Предобработчик

Данная глава посвящена компоненту предобработчик. В ней рассматриваются различные аспекты предобработки входных данных для нейронных сетей. Существует множество различных видов нейронных сетей (см. главу «Описание нейронных сетей»). Однако, для большинства нейронных сетей характерно наличие такого интервала входных сигналов, в пределах которого сигналы различимы. Для различных нейронных сетей эти интервалы различны. Большинство работающих с нейронными сетями прекрасно осведомлены об этом их свойстве, но до сих пор не предпринималось никаких попыток как-либо формализовать или унифицировать подходы к предобработке входных сигналов. В данной главе дан один из возможных формализмов этой задачи. За рамками рассмотрения осталась предобработка графической информации. Наиболее мощные и интересные способы предобработки графической информации описаны в [91]. При аппаратной реализации нейрокомпьютера, компонент предобработчик также следует реализовывать аппаратно, поскольку вне зависимости от источника входных данных их надо обрабатывать одинаково. К тому же большинство предобработчиков допускают простую аппаратную реализацию.

В этой главе будут описаны различные виды входных сигналов и способы их предобработки. В качестве примера будут рассмотрены сети с сигмоидными нелинейными преобразователями. Однако, описываемые способы предобработки применимы для сетей с произвольными нелинейными преобразователями. Единственным исключением является раздел «Оценка способности сети решить задачу», который применим только для сетей с нелинейными преобразователями, непрерывно зависящими от своих аргументов.

Наиболее важным в данной являются следующее.

При предобработке качественных признаков не следует вносить недостоверную информацию.

Сформулирована мера сложности нейросетевой задачи.