Учебное пособие по курсу «Нейроинформатика» | страница 41



Запрос к исполнителю

«Обработать очередной пример». Вид ответа зависит от параметров запроса.

Запросы к учителю

«Начать обучение сети». По этому запросу учитель начинает процесс обучения сети.

«Прервать обучение сети». Этот запрос приводит к прекращению процесса обучения сети. Этот запрос требуется в случае необходимости остановить обучение сети до того, как будет удовлетворен критерий остановки обучения, предусмотренный в учителе.

«Провести N шагов обучения» — как правило, выдается контрастером, необходим для накопления показателей чувствительности.

Запрос к контрастеру

«Отконтрастировать сеть». Ответом является код завершения операции контрастирования.

Запрос к оценке

Оценка не генерирует никаких запросов. Она выполняет только один запрос — «Оценить пример». Результатом выполнения запроса является оценка примера и, при необходимости, вектор производных оценки по выходным сигналам сети.

Запрос к интерпретатору ответа

Интерпретатор ответа не генерирует никаких запросов. Он выполняет только один запрос — «Интерпретировать ответ». Ответом является результат интерпретации.

Запросы к сети

Сеть не генерирует никаких запросов. Набор исполняемых сетью запросов можно разбить на три группы.

Запрос, обеспечивающий тестирование.

«Провести прямое функционирование». На вход сети подаются данные примера. На выходе сети вычисляется ответ сети, подлежащий оцениванию или интерпретации.

Запросы, обеспечивающие обучение сети.

«Обнулить градиент». При исполнении этого запроса градиент оценки по обучаемым параметрам сети кладется равным нулю. Этот запрос необходим, поскольку при вычислении градиента по очередному примеру сеть добавляет его к ранее вычисленному градиенту по сумме других примеров.

«Вычислить градиент по примеру». Проводится обратное функционирование сети. Вычисленный градиент добавляется к ранее вычисленному градиенту по сумме других примеров.

«Изменить карту с шагами Н1 и H2». Генерируется учителем во время обучения.

Запрос, обеспечивающие контрастирование.

«Изменить карту по образцу». Генерируется контрастером при контрастировании сети.

Таким образом, выделено семь основных компонентов нейрокомпьютера, определены их функции и основные исполняемые ими запросы.

Лекция 7.2. Задачник и обучающее множество

Эта глава посвящена одному из наиболее важных и обделенных вниманием компонентов нейрокомпьютера — задачнику. Важность этого компонента определяется тем, что при обучении сетей всех видов с использованием любых алгоритмов обучения сети необходимо предъявлять примеры, на которых она обучается решению задачи. Источником данных для сети является задачник. Кроме того, задачник содержит правильные ответы для сетей, обучаемых с учителем. Аппаратная реализация этого компонента в общем случае неэффективна.