Учебное пособие по курсу «Нейроинформатика» | страница 30



Легко показать, что если множество векторов {x>i} не содержит противоположно направленных, то размерность пространства L({x>⊗k}) равна числу векторов в множестве {x>i}.

Сеть (2) для случая тензорных сетей имеет вид

(9)

а ортогональная тензорная сеть

(10)

где r>ij>-1 — элемент матрицы Γ>-1({x>⊗k}).

Рассмотрим, как изменяется степень коррелированности эталонов при переходе к тензорным сетям (9)

Таким образом, при использовании сетей (9) сильно снижается ограничение на степень коррелированности эталонов. Для эталонов, приведенных на рис. 1, данные о степени коррелированности эталонов для нескольких тензорных степеней приведены в табл. 2.


Таблица 2. Степени коррелированности эталонов, приведенных на рис. 1, для различных тензорных степеней.

Тензорная степеньСтепень коррелированностиУсловия
C>ABC>ACC>BCC>AB+C>ACC>AB+C>BCC>AC+C>BC
10.740.720.861.461.601.58
20.550.520.741.071.291.26
30.410.370.640.781.051.01
40.300.260.550.560.850.81
50.220.190.470.410.690.66
60.160.140.400.300.560.54
70.120.100.350.220.470.45
80.090.070.300.160.390.37

Анализ данных, приведенных в табл. 2, показывает, что при тензорных степенях 1, 2 и 3 степень коррелированности эталонов не удовлетворяет первому из достаточных условий (), а при степенях меньше 8 — второму ().

Таким образом, чем выше тензорная степень сети (9), тем слабее становится ограничение на степень коррелированности эталонов. Сеть (10) не чувствительна к степени коррелированности эталонов.

Сети для инвариантной обработки изображений

Для того, чтобы при обработке переводить визуальные образов, отличающиеся только положением в рамке изображения, в один эталон, применяется следующий прием [91]. Преобразуем исходное изображение в некоторый вектор величин, не изменяющихся при сдвиге (вектор инвариантов). Простейший набор инвариантов дают автокорреляторы — скалярные произведения образа на сдвинутый образ, рассматриваемые как функции вектора сдвига.

В качестве примера рассмотрим вычисление сдвигового автокоррелятора для черно-белых изображений. Пусть дан двумерный образ S размером p×q=n. Обозначим точки образа как s>ij. Элементами автокоррелятора Ac(S) будут величины , где s>ij=0 при выполнении любого из неравенств i < 1, i > p, j < 1, j > q. Легко проверить, что автокорреляторы любых двух образов, отличающихся только расположением в рамке, совпадают. Отметим, что a>ij=a>-i,-j при всех i,j, и a>ij=0 при выполнении любого из неравенств i < 1-p, i > p-1, j < 1-qj > q-1. Таким образом, можно считать, что размер автокоррелятора равен