Учебное пособие по курсу «Нейроинформатика» | страница 30
Легко показать, что если множество векторов {x>i} не содержит противоположно направленных, то размерность пространства L({x>⊗k}) равна числу векторов в множестве {x>i}.
Сеть (2) для случая тензорных сетей имеет вид
а ортогональная тензорная сеть
где r>ij>-1 — элемент матрицы Γ>-1({x>⊗k}).
Рассмотрим, как изменяется степень коррелированности эталонов при переходе к тензорным сетям (9)
Таким образом, при использовании сетей (9) сильно снижается ограничение на степень коррелированности эталонов. Для эталонов, приведенных на рис. 1, данные о степени коррелированности эталонов для нескольких тензорных степеней приведены в табл. 2.
Таблица 2. Степени коррелированности эталонов, приведенных на рис. 1, для различных тензорных степеней.
Тензорная степень | Степень коррелированности | Условия | ||||
---|---|---|---|---|---|---|
C>AB | C>AC | C>BC | C>AB+C>AC | C>AB+C>BC | C>AC+C>BC | |
1 | 0.74 | 0.72 | 0.86 | 1.46 | 1.60 | 1.58 |
2 | 0.55 | 0.52 | 0.74 | 1.07 | 1.29 | 1.26 |
3 | 0.41 | 0.37 | 0.64 | 0.78 | 1.05 | 1.01 |
4 | 0.30 | 0.26 | 0.55 | 0.56 | 0.85 | 0.81 |
5 | 0.22 | 0.19 | 0.47 | 0.41 | 0.69 | 0.66 |
6 | 0.16 | 0.14 | 0.40 | 0.30 | 0.56 | 0.54 |
7 | 0.12 | 0.10 | 0.35 | 0.22 | 0.47 | 0.45 |
8 | 0.09 | 0.07 | 0.30 | 0.16 | 0.39 | 0.37 |
Анализ данных, приведенных в табл. 2, показывает, что при тензорных степенях 1, 2 и 3 степень коррелированности эталонов не удовлетворяет первому из достаточных условий (
Таким образом, чем выше тензорная степень сети (9), тем слабее становится ограничение на степень коррелированности эталонов. Сеть (10) не чувствительна к степени коррелированности эталонов.
Сети для инвариантной обработки изображений
Для того, чтобы при обработке переводить визуальные образов, отличающиеся только положением в рамке изображения, в один эталон, применяется следующий прием [91]. Преобразуем исходное изображение в некоторый вектор величин, не изменяющихся при сдвиге (вектор инвариантов). Простейший набор инвариантов дают автокорреляторы — скалярные произведения образа на сдвинутый образ, рассматриваемые как функции вектора сдвига.
В качестве примера рассмотрим вычисление сдвигового автокоррелятора для черно-белых изображений. Пусть дан двумерный образ S размером p×q=n. Обозначим точки образа как s>ij. Элементами автокоррелятора Ac(S) будут величины