История физики | страница 95




доказательство. Как предположил В. Эльзасер в 1925 г. (гл. 12), электронные лучи, когда они падают на кристаллы, дают явления интерференции, подобные тем, которые наблюдаются в случае рентгеновских лучей. Это подтвердили в 1927 г. Дэвиссон и Джермер, а также Г. П. Томсон. Подобные опыты с диффракцией лучей атомов гелия, атомов и молекул водорода произвели в 1929 г. О. Штерн и в 1931 г. Т. Г. Джонсон. Все эти опыты количественно подтвердили формулу де Бройля.

Достижения этой теории накоплялись очень быстро. Особенно поражающий успех она имела в применении к радиоактивному распаду при испускании -лучей. Согласно этой теории существует «туннельный эффект», т. е. проникновение через потенциальный барьер частицы, энергия которой, согласно требованиям классической механики, недостаточна для перехода через него. Г. Гамов дал в 1928 г. объяснение испускания а-частиц, основанное на этом туннельном эффекте. Согласно теории Гамова атомное ядро окружено потенциальным барьером, но -частицы имеют определенную вероятность его «перешагнуть». Эмпирически найденные Гейгером и Нэттолом соотношения между радиусом действия а-частиц и полупериодом распада (гл. 11) получили на основе теории Гамова удовлетворительное объяснение.

Наконец, историческое значение имела классическая работа В. Гейтлера и Ф. Лондона (1927) о молекуле водорода Н>2. В этом исследовании химическая связь между одинаковыми или подобными атомами была сведена к «энергии обмена». Представление об этой энергии, не имеющей аналога в прежней физике, является необходимым математическим следствием из волнового уравнения Шредингера. Посредством этого же понятия, примененного к электронной проводимости в металлах, Вернер Гейзенберг разрешил в 1928 г. старую загадку ферромагнетизма. Благодаря «явлению обмена» у железа, никеля и кобальта (но не у других металлов) магнитные моменты электронов оказываются


ориентированными параллельно, что и приводит к ферромагнетизму.

Дальнейшее развитие квантовой теории, например вопрос о совместимости волнового и корпускулярного представлений, в настоящее время не является еще исторически зрелым. Здесь мы подошли к границам нашего изложения.

Во всяком случае характерной чертой современной квантовой физики является то, что она не может ничего другого сказать о процессе, кроме вероятности его появления в определенный момент времени. Она вычисляет, например, вероятность освобождения электрона посредством света определенной интенсивности и частоты. Но установление причинной обусловленности лежит вне ее возможностей. Это та же черта, которую Швейдлер (гл. 11) заметил еще в радиоактивных превращениях, а позже Эйнштейн в поглощении и испускании света. Но законы сохранения энергии и количества движения имеют и в квантовой физике строгую значимость.