История физики | страница 94



Благодаря атомной модели Бора новый подъем испытала также теория магнетизма. Движение электронов по определенным орбитам возобновляло гипотезу Ампера о молекулярных токах (гл. 5). Теперь присоединилось еще указание величины момента каждого элементарного магнита. Это - целое кратное «магнетона Бора» - величины, опять-таки тесно связанной с константой Планка h. Правильность этого теоретического следствия подтвердили в 1921 г. В. Герлах и О. Штерн, изучая магнитное отклонение лучей атомов серебра, причем магнитный момент этих атомов оказался точно равным одному магнетону.

Теория Бора при всех своих больших и прочных успехах имела, однако, одну систематическую ошибку.


Она применяла классическую или релятивистскую механику для определения орбит электронов и после этого без всякой внутренней связи с этим определением изгоняла преобладающее большинство этих орбит, как не удовлетворяющих квантовым условиям. Более цельной и еще более успешно объясняющей спектры является основанная в 1924-1926 гг. волновая, или квантовая, механика, которая в последнее время совершенно вытеснила свою предшественницу.

Первый шаг сделал в 1924 г. Луи де Бройль. На основе теории относительности он сопоставил с каждым движением материальной точки волну, длина которой вычисляется из механического импульса частицы посредством константы Планка h. Совершенно из других соображений Э. Шредингер в 1926 г. установил для такой волны дифференциальное уравнение в частных производных, подобное волновому уравнению. Он показал, что из этого уравнения при подходящих граничных условиях можно вывести заключение о ряде дискретных значений энергии. Для атома водорода он получил те же уровни энергии, что и в теории Бора; его теория допускала, таким образом, также формулу Бальмера для спектра водорода. В 1925 г. Борн, Гей-зенберг и Иордан создали квантовую механику, которая хотя и казалась вначале отличной от теории Шре-дингера, но все же была математически идентична с этой теорией, как это доказал Шредингер еще в 1926 г. Отношение между длиной волны и импульсом, установленное де Бройлем, входило также и в эту теорию.

Квантовая механика математически применяется с большим мастерством, но ее физическое содержание, по моему мнению, до сих пор не вполне ясно. Она опирается на результаты спектроскопии, значение которых особенно велико в связи с тем, что здесь в измерениях достигается совершенно необычная для физики точность, превосходящая даже точность знаменитых астрономических измерений. Для материальных волн имеется хотя менее точное, но зато более наглядное