История физики | страница 12
В период времени от Галилея до Ньютона существовала еще вторая важная линия развития. Еванжелиста Торричелли (1608-1647) под влиянием опыта Галилея с всасывающим насосом изобрел в 1643 г. ртутный барометр. Блэз Паскаль (1623-1662) побудил своего зятя Перье сравнить показания барометра на Пюи де Дом и в Клермоне (различие в высоте над уровнем моря примерно 1000 м). Отто Герике (1602-1686) изобрел воздушный насос и объяснил на основе многих очень внушительных опытов природу атмосферного давления*). Во Введении уже было сказано, что в 1662 г. был известен закон Бойля-Мариотта относительно связи давления и объема воздуха. Другие газы **) не были тогда в распоряжении исследователей; лишь в 1766 г. Генри Кавендиш (1731-1810) открыл кислород, а в 1772 г. Даниил Резерфорд (1749-1819) - азот. Современник Паскаля Роберт Гук (1635-1703) в 1676 г. показал на простых примерах пропорциональность между деформацией и упругостью у твердых тел. Так к 1700 г. был заложен физический фундамент, на котором в следующие полтора столетия было воздвигнуто величественное здание механики. Характерная для механики точность связана с тем, что она развивалась преимущественно силами математиков. В XVIII столетии здесь преобладали французы. Действительно, ньютоновские идеи распространились прежде всего во Франции, не только среди специалистов, но в значительно более широких слоях. Этому способствовал особенно Вольтер. Здесь мы имеем хороший пример влияния физики на общее духовное развитие и поэтому также на политику.
*) «Магдебургские полушария» демонстрировались в 1656 г. Но лишь в 1663 г. Герике написал резюмирующее сообщение о своих опытах, которое появилось в 1672 г. под названием «Новые магдебургские опыты над пустым пространством».
**) Слово «газ» встречается в 1640 г. у голландского химика и врача Гельмонта. Повидимому, в основе его лежит употребленное Парацельсом (1493-1541) слово «хаос» для «смеси воздуха».
Наиболее выдающимися математиками были: Даниил Бернулли (1700-1782) и Леонард Эйлер (1707-1783), которые занимались системами многих материальных точек, твердыми телами и гидродинамикой; Жан Даламбер (1717-1783) - автор названного по его имени принципа, заменяющего уравнения движения; Жозеф Луи Лагранж (1736-1813), придавший этим дифференциальным уравнениям особенно удобную форму для сложных случаев; Пьер Симон Лаплас (1749-1827), который опубликовал в 1800 г. пятитомную «Небесную механику», содержащую гораздо больше, чем обещает название, между прочим, теорию волн в жидкости и теорию капиллярности. Так наступил блестящий расцвет аналитической механики. Дальше надо упомянуть Луи Пуансо (1777-1859), который развил механику твердого тела; Гаспара Гюстава Кориолиса (1792-1843), изучавшего влияние вращения Земли на происходящие на ней механические явления; Огюстена Луи Коши (1789-1857), давшего в 1822 г. наиболее общую математическую формулировку важных понятий деформации и упругого напряжения; исходя из закона Гука, он математически развил механику деформируемых тел, придав ей законченную форму. Вильям Роуэн Гамильтон (1805-1865) установил принцип наименьшего действия, к которому мы еще вернемся. Карл Густав Якоб Якоби (1804-1851) нашел метод исследования движения системы многих тел с помощью дифференциального уравнения Гамильтона-Якоби. Эту эпоху можно считать в основном законченной после исследований Жана Леона Пуазейля (1799-1869) о внутреннем трении в жидкостях и газах (1846-1847) и установления Гельмгольцем законов вихревого движения. Однако вплоть до современности над динамикой вязких жидкостей и газов продолжали работать выдающиеся исследователи, например, Рэлей (1842-1919), Осборн Рейнольде (1842-1912) и Л. Прандтль; их целью было прежде всего создание водного и воздушного транспорта. В этих работах существенную роль играет различие между упорядоченными («ламинарными») и неупорядоченными («турбулентными») потоками. Если в настоящее время ограничиваются только экспериментами, иногда требующими больших средств, то это происходит потому, что еще не разрешены соответствующие проблемы, поставленные перед современной математикой. Но никто не ожидал при этом результатов, которые выходили бы за пределы основ ньютоновской механики.