Теплотехника | страница 33



> W>0, причем это отличие довольно значительно. Таким образом, термодинамической вероятностью называется величина:


ее значение намного больше единицы, в связи с чем ее также называют статистическим весом термодинамического состояния. Статистическая физика также устанавливает связь термодинамической вероятности с энтропией системы.

Прямая зависимость энтропии от логарифма термодинамической вероятности определяется выражением:


где R – постоянная Клайперона;

N>0 – постоянная Авогадро.

Величина K является константой (или постоянной) Больцмана.

Следовательно, с увеличением энтропии увеличивается вероятность наступления того или иного термодинамического состояния. Причем наиболее вероятное состояние наступает при максимальном значении энтропии.

41. Уравнение состояния Ван-дер-Ваальса

В общем случае для реальных газов при вычислении параметров состояния нельзя использовать уравнение состояния pv = RT,

которое верно для идеальных газов.

Общее уравнение состояния для реальных газов.


в котором коэффициенты B>i называются вириальными. Эти коэффициенты являются функцией температуры молекул реального газа и потенциальной энергии их взаимодействия.

В определении В>i – коэффициентов производят расчет только первых двух членов ряда, остальные вириальные коэффициенты отбрасываются.

Тогда уравнение состояния для реальных газов принимает следующий вид:

где А и В – два первых вириальных коэффициента, зависящих только от температуры.

В частном случае (малая плотность газа) уравнение имеет форму:

Если В>1 = f(T, U>потенц), то уравнение превращается в уравнение состояния для реального газа Ван-дер-Ваальса:


где b– минимальный объем, который может приобретать реальный газ при сжатии;

а – коэффициент, не являющийся функцией параметров состояния.

Для разных газов величины а и b различны.

Иными словами, уравнение Ван-дер-Ваальса – это частный случай закона Боголюбова-Майера, в котором пренебрегают всеми членами 1/v выше второй степени. Если реальный газ имеет высокую плотность, то уравнения такого типа будут верны при большем количестве членов ряда. В этом случае уравнения состояния реальных газов дают точность вычислений, приемлемую на практике.

42. Уравнение состояния для реальных газов М. Н. Вукаловича и И. И. Новикова

Универсальное уравнение, описывающее состояние любых реальных газов, было получено в 1939 г. русскими учеными И. И. Новиковым и М. Н. Вукаловичем. В нем

уже учитывалось явление силового взаимодействия молекул (ассоциация, диссоциация) и в общей форме оно записывалось в виде: