Теплотехника | страница 32
dS ≥ 0,S>2 > S>1.
Для изолированной замкнутой системы изменение (приращение) энтропии положительно (необратимый процесс) либо равно нулю (обратимый процесс) для произвольного термодинамического процесса.
Для циклического процесса преобразования теплоты в работу (несамопроизвольного) SdS>i = 0 (обратимые процессы) и SdS > 0 (необратимые процессы), следовательно, в изолированной системе энтропия возрастает.
Это утверждение называется принципом возрастания энтропии.
Математическое выражение второго закона термодинамики в дифференциальном виде записывается так:
где знак равенства применяется для обратимого процесса, а неравенства – для необратимого.
Из этого уравнения видно, что общее приращение энтропии зависит от температуры. Известно, что при повышении температуры рабочего тела повышается количество теплоты, которое можно преобразовать в работу. Иначе говоря, энергетическая ценность теплоты возрастает. Таким образом, энтропия через температуру определяет количество теплоты, переведенное в работу, что устанавливает ее связь со вторым законом термодинамики. В этом законе определяются условия преобразования теплоты в полезную работу.
Эксэргетическими функциями называются выражения, позволяющие вычислять величину эксэргии.
40. Энтропия и статический характер второго закона термодинамики
Известно, что в теории механики для изучения движения отдельных молекул применяются динамические закономерности. Молекулярно-кинетическая теория отличается от механики тем, что изучает системы, состоящие из большого количества молекул. Хаотическое движение частиц в таких системах подчиняется другим (статистическим) законам. Несмотря на то что движение каждой молекулы описывается механическими законами, вся совокупность частиц не рассматривается в теории механики, ее поведение изучается статистической физикой. Дело в том, что для всех частиц устанавливается среднее значение их характеристик – средняя скорость, среднее значение энергии и др. (средняя температура, среднее давление).
При таких статистических условиях усреднение характеристик существования любого термодинамического состояния вещества (например, газа) не является строго обязательным, а только имеет некоторую вероятность.
Самым простым примером является случай равенства скоростей всех молекул газа как наименьшая вероятность существования состояния данного вещества. Обозначим условно такую вероятность значением величины В случае неодинаковых скоростей возможное число их комбинаций велико, и существование состояния, при котором скорости частиц не равны, имеет вероятность