Начертательная геометрия | страница 36



и SB, которым будет параллельна плоскость R.


Заметим, что лишь в случае гиперболы секущая плоскость будет пересекать обе полости конуса. Значит любая плоскость, которая пересекает обе полости конуса, обязательно будет пересекать его поверхность по гиперболе.

4. Пара прямых, если секущая плоскость проходит через вершину конуса и угол ее наклона к основанию конуса больше угла (рис. 107 г). Этот случай иногда рассматривают как частный случай гиперболы.

Анализируя рисунок 108, заметим, что фронтально-проецирующая плоскость может давать сечения всех рассмотренных выше видов.

3. Сечение поверхности шара

Любое сечение поверхности шара плоскостью является окружностью, которая проецируется без искажения только в том случае, если секущая плоскость параллельна плоскости проекций. В общем же случае мы будем получать эллипс. В том случае, если секущая плоскость перпендикулярна плоскости проекций, на этой плоскости проекцией окружности является отрезок прямой, который равен диаметру этой окружности.

На рисунке 109 показано пересечение поверхности шара горизонтально-проектирующей плоскостью Р. На горизонтальную плоскость сечение будет проецироваться в виде отрезка проекции р плоскости Р, который заключён между контуром шара и равен диаметру окружности сечения. На фронтальной плоскости мы получим эллипс. О>1 является центром окружности, который получен в сечении шара. Он расположен на одной высоте с центром шара О. Горизонтальная проекция о>1 центра О>1 окружности располагается посредине отрезка ab. Перпендикуляр, который опущен из точки о на прямую ab, попадает в точку о>1, являющуюся горизонтальной проекцией центра окружности сечения. Фронтальная проекция о́>1центра окружности является центром интересующего нас эллипса.


Если рассматривать эллипс как проекцию некоторой окружности, то его большая ось всегда будет проекцией того диаметра окружности, который параллелен плоскости проекций, а малая ось эллипса будет представлять собой проекцию диаметра, перпендикулярного ему. Вследствие этого большая ось эллипса проекции всегда равна диаметру проецируемой окружности. Здесь диаметр окружности CD перпендикулярен плоскости Н и проецируется без искажения на фронтальную плоскость. Для нахождения концов большой оси эллипса необходимо отложить вниз и вверх от центра о>1 эллипса (по перпендикуляру к прямой о́о́>1) отрезки о́>1с́ и о́>1, которые равны половине диаметра окружности сечения о́>1с́ = о́>1