Искатели необычайных автографов | страница 12



Фило отрывисто засмеялся.

— Интересно, как вы отличаете гиперболу от параболы? На мой взгляд, они совершенно одинаковы.

— Так то на ваш взгляд. А на самом деле…

Мате снова достал блокнот и быстро начертил две кривые.

— Неужели вы и теперь не замечаете никакой разницы?

— Теперь замечаю, — снизошел Фило. — У гиперболы концы расходятся как у рогатки, а у параболы вроде бы держатся поближе, словно что-то их пригибает или притягивает друг к другу… Но при чем тут все-таки лепешки?

— Не беспокойтесь, дойдем и до лепешек, — заверил Мате. — На сей раз проведем такое сечение, которое не будет ни параллельным образующей, ни параллельным оси. В общем, нечто промежуточное между ними. И как вы думаете, что у нас при этом получится? У нас получится замкнутая кривая, которая называется эллипсом.

— Лепешка! — сейчас же установил Фило, взглянув на контур, нарисованный на фунтике. — Как сказано в «Евгении Онегине», увы, сомнений нет, я съел эллипс!

— Теперь никто не упрекнет вас в том, что вы не пробовали геометрии… Но шутки в сторону. На этом маленьком примере я хотел показать вам, что все на свете может быть выражено языком математики.

— Даже этот же четвероногий корабль пустыни? —



Фило указал на высокомерно жующего верблюда, мимо которого они проходили.

— Отчего бы и нет? Взгляните на поверхность, образованную его горбами. Великолепный образчик гиперболического параболоида.

Мате подошел к верблюду и провел ладонью по мохнатой седлообразной спине. Но верблюд, вероятно, был противником фамильярности: он отвернулся и сплюнул, да так выразительно, что друзья расхохотались.

— Видите, — торжествовал Фило, — плевал он на ваш параболический гиперболоид или как его там…

Тут раздались певучие выкрики:

— Дыни, дыни! Спелые дыни! Положи кусочек в рот — половина сахар, половина мед!

Продолговатые, обтянутые сетчатой кожей дыни произвели на Фило не меньшее впечатление, чем лепешки.

— Не хотите ли отведать ломтик этого восхитительного эллипса, Мате? — предложил он, желая щегольнуть вновь приобретенными познаниями.

Но увы! Мате сказал, что дыня не эллипс, а эллипсоид вращения.

— Это что еще за фрукт?

— Скорее, продукт. Продукт вращения эллипса вокруг своей оси. При этом как раз и получается тело, напоминающее дыню.

— С вами не соскучишься! Не объясните ли заодно, что такое арбуз?

Фило надеялся, что Мате нипочем не ответит. Но тот преспокойно объявил, что арбуз — шар, иначе говоря, продукт вращения круга вокруг своего диаметра. А так как круг можно рассматривать как частный случай эллипса, то есть как эллипс, у которого все оси одинаковы, стало быть, шар есть частный случай эллипсоида.