Новые рассказы Рассеянного Магистра | страница 50
Сева почтительно привстал
— Позвольте мне, профессор. Надеюсь, всем известно, что касательные к кругу, проведённые из одной точки, равны между собой?
— Всем известно! — буркнул Нулик, нетерпеливо барабаня пальцами по столу. — Только для чего это надо?
— А для того, что отсюда сразу ясно; гипотенуза разделилась в точке касания на отрезки а — r и b — r. Теперь мы можем сказать, что гипотенуза равна сумме двух отрезков. а — r и b — r, то есть с = а — r + b — r. А уж отсюда ничего не стоит вывести, что диаметр круга равен сумме катетов минус гипотенуза, то есть
— Как просто! — захихикал Нулик. — Но всё-таки проверим. Значит, с у нас равно 13, а (а + b) равно 17. Тогда 2r = 17–13, то есть 4 дециметрам. А ну, налейте-ка мне тарелочку молочного киселя.
Когда тарелки опустели, президент сказал, довольно потирая руки:
— Ну вот, кисель исчерпан и повестка дня тоже.
— Ничего подобного, — возразил Олег. — Мы ещё ничего не сказали о задаче, которую Единичка задала Магистру.
— Это когда они летели над Бамбуковым океаном? — вспомнил Нулик. — У Магистра ещё компас сломался…
— Да нет, компас у него наверняка был в полной исправности.
— Почему ты думаешь? — удивился Нулик. — Ведь стрелка вертелась из стороны в сторону без всякого смысла…
— Это не стрелка вертелась. Это Единичка повернула карту на 90 градусов. А стрелка компаса всегда направлена в одну и ту же сторону — одним концом на северный магнитный полюс Земли, другим — на южный.
— Полюс, это там, где все меридианы пересекаются? — спросил Нулик, желая, очевидно, похвастаться своей эрудицией.
— Меридианы пересекаются на географическом полюсе, — сказал Олег, — а магнитный, полюс, на который указывает стрелка компаса, чуть-чуть с ним не совпадает. Так что смешивать полюс географический с магнитным не стоит. Но вернёмся всё-таки к Единичкиной задаче. По-моему, очень любопытная задача.
— Не такая уж, наверное, любопытная, если Магистр решил её единым махом, — сказал президент пренебрежительно.
— Решил, да неправильно. Ведь девять в кубе — это 729, а сумма шести в кубе и восьми в кубе всего только 728.
— Не придирайся! — заартачился Нулик. — Подумаешь, ошибся человек на единицу! Можно, поди, подобрать и такие три числа, чтобы куб одного был в точности равен сумме кубов двух других.