Новые рассказы Рассеянного Магистра | страница 30
— Ха! — Нулик язвительно усмехнулся, — Такую фотографию и я сделаю. Только у меня собаки встретятся на трёх четвертях дорожки, считая от старта, а у Севы на семи девятых. Нет, ты мне доказательства подавай!
— Устами младенца глаголет истина, — поддакнул Сева.
— Какая там истина! — огрызнулась Таня. — Уж если Олег говорит две трети, значит, две трети!
Но Нулик был неумолим.
— Пусть докажет.
И Олег стал доказывать.
— Рассмотрим сперва бег двух собак: таксы, которая бежит медленнее всех, и спаниеля. Спаниель бежит вдвое быстрее таксы. Ясно, что он с самого начала её опередит и потому встретится с нею только на обратном пути. Обозначим теперь через икс путь, пройденный таксой до встречи со спаниелем, а длину беговой дорожки — буквой а. В таком случае спаниель до встречи с таксой пройдёт путь, равный а + а — х, то есть 2а — х. На этой бумажке изображён момент их встречи.
— Пока всё правильно, — заметил Нулик. — Посмотрим, что будет дальше.
— А дальше, — продолжал Олег, — примем скорость таксы за единицу. Тогда скорость спаниеля будет равна двум.
Спрашивается, сколько времени потратит такса, чтобы встретиться со своим соперником?
— Ясно, икс секунд, — заявил президент.
— А может быть, и минут, — поправил Олег, — но это неважно. Ну, а спаниель потратит на свой путь вдвое меньше времени, то есть
Остаётся оба выражения приравнять между собой — ведь собаки-то встретились!
— Приравняем, — согласился Нулик. — Получим…
— Мы пахали, — в тон ему сказала Таня.
— Получим, что
— невозмутимо продолжал Олег.
— А отсюда любой школьник найдёт, что… Что он найдёт?
— Он найдёт, что 2х = 2а — х. Откуда Зх = 2а, а уж один икс равен двум третям а: х = >2/>3а, — закончил Олег. — Именно это я и сфотографировал.
— Принимается! — внушительно изрёк Нулик. — Но где же другие собаки?
— Будут тебе и другие Рассуждаю так: за то время, что такса одолела >2/>3 дорожки, болонка, которая бежит в четыре раза быстрее таксы, пройдёт >8/>3 пути, то есть 2 >2/>3а. Иначе говоря, болонка успела пробежать дважды дорожку, да ещё >2/>3 её и, следовательно, тоже поравнялась и с таксой, и со спаниелем.
— Блеск!.. — закричал Нулик. — Давай дальше!
— А дальше остаётся самый быстроходный пёс — карликовый пинчер. Он бежит в восемь раз быстрее таксы и сумел за то же время, что и она, пробежать путь, равный >16/>3а, то есть 5 >1/>3а. Значит, пробежав беговую дорожку пять раз, пинчер на шестом разе, идя навстречу таксе, пробежал ещё >1/>3а.
Итак, все собаки встретились!одновременно. А вот и схема бега: