Новые рассказы Рассеянного Магистра | страница 12



— Зачем же так грубо? — поморщилась Таня. — Скажи лучше — нафантазировал. Просто так, для интереса. Чтобы загадка получилась позанятней да позаковыристей.

— Она и вправду занятная, оживился Олег. — Мальчик сказал, что даты двух терранигугунских землетрясений, происшедших в двадцатом веке, представляют собой простые числа, которые отличаются особыми свойствами — никакой перестановкой цифр другого простого числа, изображающего какой-либо минувший год нашей эры, из них не сделать. Теми же свойствами обладают и даты трёх грядущих землетрясений, которые, по уверению мальчика, тоже произойдут в нашем же, двадцатом веке Эти-то числа и предлагается отгадать.

— Ну уж дудки! — отрезал Нулик — Это всё равно невозможно.

— Отчего же? — невозмутимо сказал Олег. — Последуем совету мальчика — откроем справочник Выгодского и найдём таблицу простых чисел. Вот она. Из неё мы легко узнаем, что в нашем столетии простыми числами изображаются всего 13 годов. Это 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997 и 1999 годы. Семь из этих 13 лет уже прошли, а среди семи прошедших есть всего два числа, подходящих нам по свойствам. Это 1933 и 1951 годы. Точно такими же свойствами обладают и три числа, изображающие будущие, годы двадцатого века. Это 1973, 1979 и 1999. Вот мы и нашли, что искали. А ты говорил — невозможно.

Нулик смущённо улыбнулся.

— Это я потому, что загадка была о простых числах. А где простые числа — уж там жди сложностей! Я-то знаю. Это только для Магистра все числа простые. Наверное, он забыл, что такое простое число.

— Он забыл, а ты-то помнишь? — поддразнил Сева.

— А то нет! Простыми называются числа, которые, кроме как на самих себя да ещё на единицу, ни на какие другие не делятся.

— Молодец! — похвалила Таня. — Можешь прибавить к своим сведениям о простых числах ещё и то, что среди них встречаются близнецы.

— Ну да? Мальчики или девочки?

— Ни то, ни другое. В данном случае близнецы — два последовательных нечётных простых числа. Например, 29 и 31.

— И много таких? — поинтересовался Нулик.

— Хватает. Правда, чем дальше по натуральному ряду, тем простые числа встречаются реже, но близнецы при этом попадаются довольно часто. Вот хоть 4721 и 4723. Или 5849 и 5851. Такие близнецы есть даже среди десятизначных и стозначных простых чисел.

— А вообще-то простые числа где-нибудь да кончаются? — спросил Нулик с надеждой в голосе.

— Нигде! — уверенно ответил Олег. — Это уже давным-давно доказал старик Эвкл