следует за
х
или, что то же самое,
х
предшествует
у,
то пишут
х у, у х
)
.
Говорят, что в множестве
М
установлен частичный порядок следования элементов, если для некоторых пар его элементов установлен порядок, причём выполнены следующие условия: 1) никакой элемент не следует сам за собой; 2) если
х у
и
у z
,
то
х z
(транзитивность отношения порядка). Может случиться, что в частично упорядоченном множестве
М
порядок не установлен ни для какой пары элементов
М.
С др. стороны, может случиться, что порядок установлен для всех пар различных элементов
М,
в этом случае частичный порядок следования элементов, установленный в множестве
М,
называют просто порядком следования элементов, или линейным порядком (упорядоченные множества, таким образом, являются видом частично упорядоченных множеств). Например, будем считать, что комплексное число
a’ + b’i
следует за комплексным числом и
а + bi,
если
a’ > a
и
b’ > b.
Любое множество комплексных чисел становится тогда частично упорядоченным. В частности, частично упорядоченным становится любое множество действительных чисел (рассматриваемых как специальный случай комплексных). Т. к. при этом порядок следования таков, что действительное число
a’
следует за действительным числом
а
тогда и только тогда, когда
a’
больше
а,
то всякое множество действительных чисел оказывается даже просто упорядоченным. Понятия частично упорядоченного (иначе – полуупорядоченного) и упорядоченного множества принадлежат к числу основных общих понятий математики (см.
Множеств теория
)
, Вполне упорядоченные множества.
Упорядоченное множество называется вполне упорядоченным, если каждое его подмножество обладает первым элементом (т. е. элементом, за которым следуют все остальные). Все конечные упорядоченные множества вполне упорядочены. Натуральный ряд, упорядоченный по возрастанию (а также некоторыми др. способами), образует вполне упорядоченное множество. Важность вполне упорядоченных множеств определяется главным образом тем, что для них справедлив принцип трансфинитной индукции (см. Трансфинитные числа
).
Упорядоченные множества, имеющие одинаковый порядковый тип, обладают и одинаковой мощностью, так что можно говорить о мощности данного порядкового типа. С др. стороны, конечные упорядоченные множества одинаковой мощности имеют один и тот же порядковый тип, так что каждой конечной мощности соответствует определённый конечный порядковый тип. Положение меняется при переходе к бесконечным множествам. Два бесконечных упорядоченных множества могут иметь одну и ту же мощность, но разные порядковые типы.