Большая Советская Энциклопедия (КВ) | страница 76



  Если полю, находящемуся в вакуумном состоянии, сообщить достаточную энергию, то происходит возбуждение поля, т. е. рождение частицы — кванта этого поля. Т. о., появляется возможность описать порождение частиц как переход из «ненаблюдаемого» вакуумного состояния в состояние реальное. Такой подход позволяет перенести в К. т. п. хорошо разработанные методы квантовой механики — свести изменение числа частиц данного поля к квантовым переходам этих частиц из одних состояний в другие.

  Взаимные превращения частиц, порождение одних и уничтожение других, можно количественно описывать при помощи так называемого метода вторичного квантования [предложенного в 1927 П. Дираком и получившего дальнейшее развитие в работах В. А. Фока (1932)].

  2. Вторичное квантование. Переход от классической механики к квантовой называют просто квантованием, или реже — «первичным квантованием». Как уже говорилось, такое квантование не даёт возможности описывать изменение числа частиц в системе. Основной чертой метода вторичного квантования является введение операторов, описывающих порождение и уничтожение частиц. Поясним действие этих операторов на простом примере (или модели) теории, в которой рассматриваются одинаковые частицы, находящиеся в одном и том же состоянии (например, все фотоны считаются имеющими одинаковую частоту, направление распространения и поляризацию). Т. к. число частиц в данном состоянии может быть произвольным, то этот случай соответствует бозе-частицам, или бозонам,

подчиняющимся Бозе — Эйнштейна статистике.

  В квантовой теории состояние системы частиц описывается волновой функцией или вектором состояния. Введём для описания состояния с N частицами вектор состояния Y>N; квадрат модуля Y>N, |Y>N|>2, определяющий вероятность обнаружения N частиц, обращается, очевидно, в 1, если N достоверно известно. Это означает, что вектор состояния с любым фиксированным N нормирован на 1. Введём теперь оператор уничтожения частицы а>– и оператор рождения частицы а>+. По определению, а>– переводит состояние с N частицами в состояние с N—1 частицей, т. е.

     (3)

  Аналогично, оператор порождения частицы а>+ переводит состояние Y>N в состояние с N + 1 частицей:

,     (4)

[множители

 в (3) и
 в (4) вводятся именно для выполнения условия нормировки: |Y>N|>2= 1]. В частности, при N = 0 а>+Y>0 = Y>1, где Y>0 вектор состояния, характеризующий вакуум; т. е. одночастичное состояние получается в результате порождения из «вакуума» одной частицы. Однако