Компьютерра, 2008 № 25-26 (741-742) | страница 19



Некоторые из них остаются "тропинками", другие превращаются в "скоростные шоссе". В 2000 году Грингард и Кендел совместно со шведским фармакологом Арвидом Карлсоном (Arvid Carlsson) были удостоены Нобелевской премии по физиологии и медицине в первую очередь за открытие и исследование медленной синаптической передачи.

Интересно, что ключевые стадии формирования памяти примерно одинаковы у различных организмов. Поэтому механизмы, установленные на примере моллюсков, могут быть с высокой степенью достоверности перенесены и на млекопитающих, в том числе на человека. Кроме того, нервная система моллюсков достаточно проста, чтобы приблизиться к пониманию взаимодействия ее частей и формирования памяти (условных рефлексов).

Так, центральная нервная система морского зайца состоит всего из 20 тысяч нервных клеток, причем некоторые из них можно увидеть невооруженным глазом (для сравнения, головной мозг человека содержит около 100 млрд. нейронов, каждый из которых в среднем образует 10 тысяч синапсов с другими нейронами).

Именно этим объясняется интерес нейробиологов к аплизии. Моллюск многие годы является одним из основных объектов нейробиологических исследований (например, группа Глэнзмана "верна" аплизии уже четверть века).


Исследуя биохимические глубины процесса запоминания у морского зайца, калифорнийские ученые наткнулись на доселе неизвестное явление. Оказалось, что присоединение серотонина к постсинаптическому нейрону вызывает в последнем увеличение содержания ионов кальция. Затем эти ионы выделяются в синаптическую щель и мигрируют обратно к пресинаптической нервной клетке. Там ионы запускают процесс синтеза белков, которые также принимают участие в регулировании долговременного изменения структуры синапсов и образования новых связей.

Таким образом, Глэнзман с сотрудниками открыли обратную передачу сигнала от принимающего нейрона к передающему, происходящую в ответ на прямой нейромедиаторный сигнал. То есть, согласно результатам этого исследования, чтобы запустить вышеописанные процессы формирования долговременной памяти, мало дать "классический" прямой сигнал, нужно еще дождаться ответа в виде потока ионов кальция. Зачем нужна эта дополнительная стадия? По мнению Глэнзмана, такой механизм предотвращает долговременные изменения синапсов по "неуважительной" причине, то есть играет роль своеобразного фильтра, отсеивающего внешние стимулы, "недостойные" быть зафиксированными механизмом долговременной памяти. Обратный кальциевый сигнал — это своего рода подтверждение о запуске синтеза молекулярных структур, необходимых для сохранения информации в долговременной памяти — так мозг выбирает из всего потока важную информацию.