Компьютерра, 2007 № 29 (697) | страница 15
Но теперь ученым, наконец, удалось поставить очень тонкие и трудоемкие эксперименты и надежно установить существование акустических плазмонов. Для этого была изготовлена высокоточная электронная пушка, которая в глубоком вакууме обстреливала медленными электронами поверхность идеального кристалла бериллия. Когда эти электроны, словно камешки, отскакивали от поверхности озера свободных электронов металла, некоторые из них теряли как раз то количество энергии, которое необходимо, как предсказывает теория, для возбуждения поверхностного акустического плазмона.
Согласно расчетам, такой акустический плазмон живет лишь несколько фемтосекунд и за это время успевает пробежать по поверхности считанные нанометры. Однако этого достаточно, чтобы сильно повлиять на протекание многих химических реакций. Пока не доказан, но вполне возможен вклад этих возбуждений в механизм высокотемпературной сверхпроводимости, которая, как известно, возникает в керамиках сложного состава со слоистой структурой. Возможно, поверхностные акустические плазмоны удастся возбуждать оптическими методами за счет дифракции света на специально созданных поверхностных наноструктурах. Тогда их можно будет использовать в фотонике.
Поверхностные акустические плазмоны должны возбуждаться на многих металлах. Сейчас даже трудно представить, какие практические применения могут найти эти волны. Во всяком случае, надежное экспериментальное доказательство их существования развязывает руки теоретикам, чьи предложения теперь ограничены лишь пределами собственной фантазии. ГА
В 1858 году Август Мебиус представил Французской Академии наук трехмерную поверхность, имеющую только одну "сторону", известную ныне как лист Мебиуса. Двигаясь по листу Мебиуса, можно обойти всю поверхность, не пересекая ее краев. Лист Мебиуса, являющийся одним из символов бесконечности, можно получить, просто склеив два конца бумажной полоски и предварительно развернув один конец на 180 градусов по отношению к другому. Очевидно, что чем длиннее полоска, тем легче совместить ее концы подобным образом. Однако, увеличивая ширину листа при неизменной длине, мы столкнемся с пределом ширины, преодолев который, соединить концы листа, не смяв его, невозможно. Вычислить этот предел исходя из параметров "бумажной полоски" до сих пор не удавалось. Несмотря на кажущуюся простоту – это одна из нерешенных проблем.
Первые работы, посвященные возможностям математического анализа формы листа Мебиуса, появились еще в 1930-х годах, но орешек оказался слишком твердым. Лишь сейчас, после стольких лет, задача, похоже, решена. Евгений Старостин и Герт Ван дер Хейден (Gert van der Heijden) из Лондонского университетского колледжа опубликовали работу, позволяющую предсказывать форму листа Мебиуса на основании данных о поверхности, его формирующей. Ученые установили, что форма листа Мебиуса может быть предсказана с помощью дифференциальных уравнений, известных уже двадцать лет, причем эти уравнения могут описывать форму любой эластичной полосчатой поверхности. Как полагают английские математики, их открытие выходит далеко за пределы "чистой математики". С помощью уравнений Старостина – Ван дер Хейдена можно моделировать изгибание и смятие любой сложности, например, предсказать форму смятого листа бумаги, ткани или металлической обшивки, что может пригодиться в механике для "физически корректного" теоретического изучения процессов деформации. Новые уравнения могут быть использованы при создании различных спецэффектов и, возможно, войдут в состав "физических движков" компьютерных игр следующих поколений. ЕГ