Компьютерра, 2007 № 25-26 (693-694) | страница 15
Идея использования магнитных наночастиц в качестве носителей информации не нова. Несмотря на кажущиеся радужными перспективы, на этом пути есть ряд серьезных препятствий. Чтобы значительно увеличить плотность записи, придется располагать частицы очень близко друг к другу. А здесь возникают трудности не только технологического, но и принципиального характера. Для стабильного хранения информации наночастицы должны устойчиво сохранять пространственную ориентацию своего вектора намагниченности. Влияние внешних возмущений (например, магнитного поля соседних частиц) может отклонять частицу от нужного положения, приводя к ошибкам в данных. По мнению американских исследователей, эти проблемы поддаются решению путем эффективного использования формы наночастиц. Нановолокна хороши тем, что, собирая их в пучки, можно получить очень вытянутые агрегаты, в которых магнитное поле строго ориентировано в двух направлениях – от одного полюса к другому – и не оказывает сильного влияния на соседние частицы. К тому же «перевернуть» вытянутые магниты, расположенные близко друг к другу, не так просто, как сферические домены.
К сожалению, до жестких дисков, построенных на подобной основе, еще далеко. Впрочем, магнитные нановолокна могут найти применение и в более «приземленных» приложениях – например, двигателях и генераторах. Кроме того, сплав платины и железа хорошо совместим с живыми тканями, поэтому новые волокна вполне может «приютить» медико-биологическая отрасль. ЕГ
Круговорот воды в природе – это сила, способная влиять на климат в глобальном масштабе. Важность как можно более точного предсказания климатических изменений очевидна. Недаром на решение этих задач брошены мощности самых производительных суперкомпьютеров. Однако помощь в решении этой проблемы может прийти и со стороны фундаментальных исследований строения вещества.
Совместная работа английских и немецких ученых, возможно, прольет свет на механизм формирования водяного льда. Анджелос Михаелидес (Angelos Michaelides) из Лондонского центра нанотехнологии и Карина Моргенштерн (Karina Morgenstern) из Университета Ганновера, сочетая эксперимент и теоретическое моделирование, получили уникальные данные о молекулярной и электронной структуре гексамера воды (ассоциата из шести молекул воды, связанных между собой водородными связями), который можно приближенно рассматривать как самую первую стадию роста кристаллика льда.