Компьютерра, 2006 № 24 (644) | страница 22



Кахилл приводит пример с ожирением (obesity) — точнее, со словом «ожирение», которое в конце 2003 года стало все чаще мелькать в печати и блогах. К середине 2004 года проблема obesity стала трендом, а гиганты фастфуда, которых обвиняли в провоцировании этого серьезного недуга, столкнулись с проблемами. А столкновения, утверждает Кахилл, можно было бы избежать, вовремя прибегнув к текст-майнингу. Достаточно было отследить графики упоминаний слова «ожирение» в связке с упоминанием крупнейших сетей быстрой еды. Сделав это, сети бы поняли, на какую из них в ближайшее время обрушится удар общественного мнения — и успели бы перестроиться в духе времени.

Однако такие задачи — лишь первая ступень посвящения для профессионалов истинного текст-майнинга. Уровень серьезных систем сегодня позволяет компаниям браться за решение более деликатных вопросов.

Управление репутацией. Можно отследить, какова тональность упоминаний данной компании в СМИ, как она меняется со временем, и попытаться понять — с чем связаны эти изменения.

Конкурентный анализ. Из сообщений СМИ можно вытрясти более или менее правдоподобную картину расстановки сил в той или иной отрасли. Очень грубая модель такова — о ком больше и лучше говорят, тот и более успешен. Чтобы из этой грубой модели сделать сколько-нибудь рабочую, нужны очень серьезные усилия — ибо упоминания надо уметь классифицировать, рейтинговать по массе параметров, увязывать друг с другом и с целями исследования. Как ни странно, сегодня такой уровень уже достигнут — хотя полностью автоматизировать подобные вещи вряд ли возможно даже в принципе.

Бизнес-разведка. Что тут есть от настоящей разведки — судить не берусь. Очевидно, однако, что — в сочетании с перечисленными выше запросами — разумная технология связывания ключевых упоминаний в цепочки может давать отличный материал для размышлений. Тем более что оригиналы статей и даже записи телепередач доступны мгновенно — но тут я уже перехожу к рассказу о подробностях, замеченных при личных наблюдениях за увлекательным процессом текстовых раскопок в офисе «Медиалогии».

В текущую работу по мониторингу СМИ и поддержанию базы знаний здесь вовлечено около ста человек. Работа ведется круглосуточно, причем ночная смена, как правило, самая загруженная — в это время обрабатываются материалы изданий, которые придут к читателям утром. Обработка и анализ идут в несколько этапов.

В сыром виде на вход системы непрерывно приходят по подписке огромное количество СМИ, а также собранные роботами интернет-ресурсы свободного доступа. Анализируются только российские СМИ (зарубежные, которых около трехсот, просто отправляются в постоянно обновляемый архив), в том числе транскрипты шести основных телеканалов. Самые большие базы отраслевых источников — по финансам и по ИТ. Все это сортируется, из полученных файлов извлекается текст и отправляется на дальнейшую обработку (начиная с этого момента, pdf’ы исходных материалов прессы, а также видеоматериалы привязаны к текстам ссылками).