Письмо сыновьям А Н и М Н Чернышевским | страница 16
Только. Беды, в серьезном смысле слова, никому от того нет. Да? Так ли? Но пусть беды нет; пусть дело лишь в том, что сами они оказались дураками и предали свою науку, математику, на поругание людям средневекового мрака. Только. Беда не велика. Да. Что за беда была бы, если бы от времен первобытного дикарства счетом по пальцам, потом арифметикою и т. д. занимались только дураки? - Мы не имели б Архимеда, Гиппарха, Коперника и т. д. до Лапласа,- мы оставались бы полудикими номадами. Только.
Итак? - беда от ослиной премудрости Гельмгольца с компаниею невелика. Но нельзя ж сказать: "не особенно велика". Они, одуревши, проповедуют, вместо научной истины, одуряющую доктрину дикого, невежественного фантазерства. Только. Беда не велика? - Да, сравнительно с чумою или сильным неурожаем, не велика.
Довольно об этом. И перейдем к финалу статьи Гельмгольца, к дифирамбу победы, который воспевает он в честь себе и своим сподвижникам.
Перед удивленной вселенной раскрывается непостижимая умом цель бессмысленной статьи: автор торжествует, как оказывается, победу; и одержал он эту победу,- оказывается,- над Кантом, мысли которого, в изуродованном виде, составляли весь материал его изумительных мудрствований. Он провозглашает:
"Подвожу итоги:
"I. Геометрические аксиомы, взятые сами по себе, вне всякой связи с основами механики, не выражают отношений реальных вещей.
Душенька мужичок, заврался ты. Не смыслишь ты, ничего не смыслишь ни в механике, ни в геометрии.- Треугольник сам по себе неужели ж не треугольник? И неужели ж у него не три угла? А аксиомы - это элементы, известная комбинация которых дает треугольник. Как же они сами по себе не выражают "отношений реальных вещей"? - Неужели ж треугольник становится треугольником, лишь передвинувшись с одного места на другое? - Душенька мужичок, "механика" говорит о "равновесии" и о "движении". А "геометрия" о телах и элементах геометрических тел независимо от того, лежат ли они, или двигаются,- так, в элементарнейшей части геометрии; в "Теории функций" иная точка зрения. Но ты, душенька, не умеешь различать "Эвклида" от "Теории функций".- Правда, и у "Эвклида" говорится: "проведем линию", "будем обращать линию около одного из ее концов" и т. д.; но это, душенька, лишь "учебные приемы" для облегчения тебе, душенька; а ты, по своему невежеству, сбился на этом и перепутал "Эвклида" с механикою.- Продолжай, душенька мужичок.
"Если мы",- продолжает деревенщина-простофиля,- "если мы, таким образом изолировав их" (аксиомы геометрии от механики) "будем смотреть на них вместе с Кантом".