Журнал «Компьютерра» 2007 № 09 (677) 06.03.2007 | страница 18
Как известно, мощные ускорители электронов отличаются более чем солидными размерами. SLAC, который доводит энергию электронов до 50 ГэВ, имеет длину 3200 м. И это отнюдь не случайно. Размеры радиочастотных вакуумных ускорителей зависят от предела напряженности ускоряющего электрического поля, который не превышает ста миллионов вольт на метр из-за возможности пробоя (рабочий показатель SLAC куда меньше, двадцать миллионов вольт на метр). По этой причине вот уже пару десятков лет ученые обсуждают возможность ускорения электронов не в пустом пространстве, а в плазме. В этом случае электроны наращивают скорость, двигаясь «на гребне» быстро распространяющихся возмущений плотности плазменных зарядов, так называемых кильватерных волн (wakefield). Плазменный разгон в кильватерных волнах в принципе позволяет на три-четыре порядка повысить напряженность электрического поля и при этом не создает опасности пробоя. Поля такой силы можно использовать для разгона электронов или иных заряженных частиц до релятивистских и ультрарелятивистских энергий (частица считается релятивистской, если отношение ее скорости к скорости света сравнимо с единицей и ультрарелятивистской - если оно очень близко к единице) на дистанциях порядка нескольких метров или даже сантиметров.
Кильватерные волны чаще всего возбуждают с помощью мощных импульсов лазерного излучения. Каждый такой импульс выталкивает электроны со своего пути и потому тянет за собой волну зарядовой плотности. В сильно разреженной плазме скорость импульса почти не отличается от скорости света. Поскольку кильватерная волна распространяется вслед за импульсом без отставания, ее фазовая скорость совпадает с групповой скоростью самого импульса, то есть опять-таки приближается к световой.
Возможности лазерного ускорения электронов в кильватерных плазменных волнах изучают во многих лабораториях мира. В этих экспериментах сгустки электронов инжектируются в плазму, которая одновременно «обрабатывается» лазерными импульсами (сами сгустки могут предварительно разгоняться в радиочастотном ускорителе). В прошлом году сотрудники Национальной лаборатории имени Лоуренса в Беркли в сотрудничестве с английскими физиками использовали для генерации кильватерных волн 40-тераваттный лазер и с его помощью разогнали электроны до энергии чуть больше 1 ГэВ. К тому же им удалось получить почти монохроматические электронные сгустки, внутри которых разброс частиц по энергиям не превышал двух с половиной процентов.