Моделирование рассуждений. Опыт анализа мыслительных актов | страница 25
Рассмотрим два примера получения заключения в соритах. Первый сорит содержит три посылки:
Малые дети неразумны.
Тот, кто может укрощать крокодилов, заслуживает уважения.
Неразумные люди не заслуживают уважения.
Чтобы начать процесс вывода, необходимо сначала привести все посылки к нормальной форме, принятой в схемах базовых высказываний в силлогистике. После этого преобразования посылки сорита примут вид:
Всякие малые дети есть неразумные люди.
Всякий, укрощающий крокодилов, есть заслуживающий уважения.
Всякие неразумные люди не есть заслуживающие уважения.
Возьмем первую и третью посылки. Если обозначить через Р класс сущностей с именем «малые дети», через М – с именем «неразумные люди», а через S – с именем «заслуживающие уважения», то получим схему взаимного расположения Р, М и S, которая соответствует схеме четвертой фигуры на рис. 10.
Рис. 15.
На рис. 15 в верхнем ярусе показаны два возможных варианта областей истинности для первой посылки. Вторая посылка такова, что ее добавление к каждой из областей первой посылки дает только одну альтернативу. Обе области, показанные в нижнем ярусе, есть области типа g (рис. 8). Это означает, что в качестве заключительного высказывания силлогизма может выступать лишь высказывание типа Е. Само заключение при этом имеет вид «Всякие, заслуживающие уважения, не есть малые дети». После этого промежуточного вывода мы имеем две посылки:
Всякие, заслуживающие уважения, не есть малые дети.
Всякий, укрощающий крокодилов, есть заслуживающий уважения.
Если теперь М – класс с именем «заслуживающие уважения» (надо помнить, что М – единственный класс, имя которого встречается в обеих посылках), то Р соответствует классу «малые дети», a S – классу «укрощающий крокодилов». Такое введение классов сущностей приводит нас к первой фигуре силлогистики Аристотеля (рис. 10). Для получения вывода можно воспользоваться тем, что показано на рис. 16. В верхнем ярусе возможна только одна область истинности, а добавление к первой посылке второй приводит к появлению двух вариантов. Эти два варианта дают область истинности, соответствующую схеме базового высказывания Е. Таким образом, окончательное заключение разбираемого нами сорита выглядит следующим образом: «Всякий, укрощающий крокодилов, не есть малые дети».
Рис. 16.
При получении заключений мы из соображений наглядности каждый раз обращались к графической интерпретации областей истинности. На самом деле для правильных модусов силлогистики Аристотеля (поскольку схемы посылок однозначно определяют схему заключения в каждой из четырех фигур) эти заключительные схемы могут при необходимости выдаваться автоматически. Например, для первой фигуры если посылки имеют тип