Диалоги (ноябрь 2003 г.) | страница 6



Вот такие сложные миры получаются из удивительно «плотной» по информации начальной математической структуры. Квадратичное отображение, когда на «комплексной плоскости» следующее число равно предыдущему в квадрате плюс константа С, при разных С дает совершенно удивительные «миры». Не буду углубляться сейчас в то, как это получается. А вот знаменитые «кардиоды» Мандельброта, это уже множество значений самого параметра С с определенными свойствами. Опять-таки каждому числу соответствует свой «мир», и все эти миры как бы сведены в какую-то универсальную геометрическую и алгебраическую структуру. Причем, во многом вид этой универсальной структуры, множества Мандельброта, не зависит от самого отображения. То есть вы можете взять другое отображение и опять получить ту же самую структуру. Эти структуры «самоподобны». То есть если вы увеличите какой-то участок рисунка, вы там увидите как бы новый мир, но он будет во многом подобен миру на больших масштабах.

Физики, собственно говоря, здесь опять делятся на две части. Ортодоксальные физики просто игнорируют существование таких структур. Слишком многое надо менять, большинство не готово к этому. Люди более гибкие пытаются построить фундаментальную фрактальную физику. Не какие-то приложения, к кластерам звездным или к кристаллам, к береговой линии и так далее, а построить действительно фундаментальную фрактальную физику. Но опять-таки это только первые попытки, это опять-таки дело будущего.

Существуют и некоторые другие структуры, о которых я надеюсь сказать попозже. Теперь же перейду ближе к своим вещам, но перед этим упомяну еще замечательные структуры, открытые нашим российским физиком, Ю.И. Кулаковым из Новосибирска, учеником И.Е. Тамма. В свое время, уже достаточно давно, он предложил получать физические законы из так называемых систем отношений. И только из них! То есть вот это и есть вещи, очень близкие к тем, о чем мы говорили: к логике, к исчислению высказываний. И одна эта исходная посылка позволила ему написать очень красивое и «компактное» уравнение, которое приводит к совершенно нетривиальной математике и, с другой стороны, дает, например, обоснование простых линейных законов, которые мы имеем в общей физике. Например, закон Ньютона очень элегантно формулируется на языке «систем отношений», закон Ома и др.

Другой наш физик, Ю.С. Владимиров, подхватил эти идеи и попытался их реализовать на уровне элементарных частиц, построить на основе «систем отношений» фундаментальную физику. И продвижения здесь есть, очень большие продвижения. Недавно у него вышла монография «Метафизика». Он не побоялся даже использовать такое, совершенно незаслуженно «опошленное», если можно так сказать, слово; он имеет на это право. Там действительно очень большие продвижения.