Параллельный перенос вектора. Критика | страница 9





Выведем общую формулу, определяющую изменение вектора при параллельном переносе вдоль бесконечно малого замкнутого контура. Это изменение ΔА>k можно записать в виде



где интеграл берётся по данному контуру. Подставляя вместо δА>k выражение (85.5), имеем



стоящий под интегралом вектор А>i меняется по мере его переноса вдоль контура" [9, с.349].

Сначала отметим очевидную, на наш взгляд, ошибку на рисунке: штрихом должен быть обозначен вектор 1, направленный вертикально. Нетрудно заметить, что этот рисунок практически тождественен нашему рис.2a. Следовательно, если, как и там, мы здесь также "срежем" верхушку траектории в точке A, то сразу же обнаружим, что вектор на самом деле не вернулся в исходную точку!



Рис.7. Перенос вектора в искривлённом 2-мерном пространстве по замкнутой траектории не меняет его направления при возвращении в исходную точку


На рис.7 мы исправили отмеченную выше неточность в обозначениях векторов в точке А. Добавленная траектория красного цвета отчётливо показала, что в исходном варианте вектор 1' на самом деле не вернулся в исходную точку А. Новая обойденная вектором поверхность пространства подкрашена голубоватым цветом. Возвращение в исходную точку оказалось иллюзией, поскольку все промежуточные положения вектора вблизи точки A на самом деле слились в ней воедино, при этом соответствующие им направления отображены не былы. С нашими исправлениями видно, что из исходной точки A' вектор проходит, как и в исходном варианте, через точки B и С. Однако конченой точкой при перемещении вектора 3 является теперь не исходная точка A', а точка A''. Следовательно, в этой точке вектор 1' и не должен совпадать по направленю с ветором 1 (малинового цвета). Чтобы вернуться в действительно исходную точку этот вектор 1' должен пройти ещё ряд промежуточных положений – 1'', 1''', 1''''. Только после этого он окажется в непосредственной близости от исходной точки A'. Теперь уже ему ничто не мешает слиться с исходным направлением вектоора 1 (малинового) в действительно исходной точке A'.

Выводы

Из приведённых доводов прямо следует: параллельный перенос вектора в рамках пространства не позволяет получить информацию о кривизне пространства, в частности, на поверхности сферы. Несложно обнаружить, что подобное несоответствие возникает и на поверхности тора, и догадаться, что это справедливо в отношении любой искривленной поверхности. Но как же тогда следует относиться к строгим аналитическим выкладкам и доказательствам возможности этого? Ответ содержится в приведенном анализе. Как в аналитических выкладках, так и в графических примерах при параллельном переносе вектор не возвращен в исходное положение, поэтому и сохраняет параметры последнего участка траектории.