Психология процесса изобретения в математике | страница 68



«Я доказал, что соотношение xm + ym = zm невозможно в целых числах (x, y, z отличны от нуля, m больше чем 2). Но на полях недостаточно места, чтобы записать доказательство» 114.

Три века прошло с тех пор, и всё ещё ищут доказательство, которое Ферма мог бы написать на полях, если бы они были больше. Тем не менее кажется, что Ферма не ошибся, так как частные доказательства для некоторых обширных классов значений показателя m найдены; например, для всех m, меньших ста, доказательство нашли 115. Но огромная работа, которая сделала возможным получение этих частных результатов, не могла быть произведена путём прямых математических pacсуждений 116: эта работа требовала применения нескольких важных алгебраических теорий, которые были совершенно неизвестны в эпоху Ферма, и никаких намёков на которые нет в записях Ферма. После того как в течение XVIII и начала XIX века были установлены некоторые основные положения алгебры, немецкий математик Куммер, чтобы приступить к проблеме «последней теоремы Ферма», должен был ввести новое и смелое понятие «идеала» — грандиозная идея, которая полностью революционизировала алгебру. Но, как мы только что сказали, даже это мощное орудие математической мысли дало до сих пор лишь частные случаи доказательства этой таинственной теоремы.


Риман (1826–1866). Бернгард Риман, огромную интуитивную способность которого мы уже отмечали, существенно обновил наши знания о распределении простых чисел, также одного из наиболее таинственных вопросов математики 117. Он научил нас получать результаты в этом направлении, пользуясь методами интегрального исчисления, точнее, изучая некоторую величину, являющуюся функцией переменной S, которая может принимать действительные или мнимые значения. Он доказал некоторые важные свойства этой функции, но два или три важных свойства он указал не приводя доказательства. После смерти Римана в его бумагах нашли запись, в которой говорилось: «Эти свойства ζ(S) (функции, о которой идёт речь) выводятся из одного из её выражений, которое я не сумел достаточно упростить, чтобы опубликовать».

Мы и сейчас не имеем ни малейшего понятия о том, что могло бы представлять собой это выражение! Что же касается свойств, простой формулировкой которых он ограничился, то мне потребовалось десятка три лет, чтобы я смог их доказать — все, кроме одного. Что касается этого последнего свойства, то оно до сих пор остаётся недоказанным, хотя благодаря огромной работе, проделанной за последние полвека, получено несколько очень интересных результатов в этом направлении. Кажется всё более и более вероятным — но ещё никоим образом не достоверным — что гипотеза Римана верна. Естественно, все эти дополнения к трудам Римана могли быть сделаны лишь благодаря фактам, которые в его время были абсолютно неизвестны; что же касается одного из свойств, которое он сформулировал, то почти невозможно понять, как он мог его открыть, не используя частично этих общих принципов, хотя он не упоминает о них в своём мемуаре