Научная биография с воспоминаниями о прошлом | страница 53
Отсюда возникает весьма важная для ботаников, генетиков и селекционеров проблема идентификации генома.
Как дискретная в эволюционном и систематическом отношении сложная система геном обычно описывается известными параметрами биологического вида. Цитологическими критериями генома служат видовые параметры кариотипа — число, размеры и форма хромосом, генетическими — пределы генетической изменчивости, которые соответствуют границам вида как репродуктивного сообщества. Разнокачественные (разновидовые, разнородовые) геномы генетически несовместимы. Это обнаруживается в нескрещиваемости видов или стерильности их потомства. Цитогенетически выявляют несовместимость геномов по резкому падению процента конъюгации хромосом в мейозе и разного рода нарушениям в митозах. «Сосуществование» разнокачественных геномов в аллополиплоидном генотипе объясняется тем, что они в нем сдвоены и каждый геном проходит фазы мейоза как на диплоидном уровне.
Мы предложили третий — биохимический, или молекулярный — критерий определения геномной принадлежности растений, а именно, по мономорфным белкам или белковым признакам, свойственным только носителям данного генома или представителям данного вида. Такие белки, или белковые признаки, названы белковыми маркерами генома. Они выявлены для видов и форм большинства культурных растений и их диких сородичей. В основном это серологические маркеры, т. е. белки-антигены с отчетливо выраженной видовой, или геномной, специфичностью. Наиболее эффективными и удобными в методическом отношении для целей идентификации генома как генетической системы видовой категории оказались мономорфные видоспецифичные белки-антигены семян — альбумины и глобулины спиртовой фракции из зерновки злаков, запасные глобулины семян двудольных, а также гистоны.
На многих примерах удалось показать соответствие генома, маркируемого белками, репродуктивным границам вида. Это неслучайно. Белки — главные факторы видовой избирательности и механизмов генетического барьера между видами. Они, как и нуклеиновые кислоты, наделены свойствами «узнавания». Способность к узнаванию белки придают надмолекулярным комплексам и структурам высшего порядка, в образовании которых они участвуют. Это хорошо показано в многочисленных экспериментах по реконструкции гетеромегамерных ферментов, фрагментов мембран, рибосомальных частиц, хромосом и других клеточных структур, с заменами протомер и субъединиц на одноименные структуры белка от организмов, принадлежащих другим видам.