Рассказы о математике | страница 7



sign = 1

for p in range(0,33):

sum += 4.0*sign/(1+2*p)

print (p,sum)

      sign = -sign


Запустим программу в любом онлайн-компиляторе языка Питон (например https://repl.it/languages/python3). Получаем результат:

Шаг      Значение

0       4.0


1       2.666666666666667


2       3.466666666666667


3       2.8952380952380956


4       3.3396825396825403


5       2.9760461760461765


6       3.2837384837384844


7       3.017071817071818


8       3.2523659347188767


9       3.0418396189294032


10       3.232315809405594


11       3.058402765927333


12       3.2184027659273333


13       3.0702546177791854


14       3.208185652261944


15       3.079153394197428


16       3.200365515409549


17       3.0860798011238346


18       3.1941879092319425


19       3.09162380666784


20       3.189184782277596


21       3.0961615264636424


22       3.1850504153525314


23       3.099944032373808


24       3.1815766854350325


25       3.1031453128860127


26       3.1786170109992202


27       3.1058897382719475


28       3.1760651768684385


29       3.108268566698947


30       3.1738423371907505


31       3.110350273698687

32       3.1718887352371485


Как можно видеть, сделав 32 шага алгоритма, мы получили лишь 2 точных знака. Видно что алгоритм работает, но количество вычислений весьма велико. Как известно, в 15м веке индийский астроном и математик Мадхава использовал более точную формулу, получив точность числа Пи в 11 знаков:

Попробуем воспроизвести ее в виде программы, чтобы примерно оценить объем вычислений.


Первым шагом необходимо вычислить √12. Возникает резонный вопрос - как это сделать? Оказывается, уже в Вавилоне был известен метод вычисления квадратного корня, который сейчас так и называется “вавилонским”. Суть его в вычислении √S по простой формуле:

Здесь x0 - любое приближенное значение, например для √12 можно взять 3.


Запишем формулу в виде программы:

from decimal import Decimal


print ("Квадратный корень:")

number = Decimal(12)

result = Decimal(3)

for p in range(1,9):

result = (result + number/result)/Decimal(2)

difference = result**2 - number

print (p, result, difference)

sqrt12 = result


Результаты весьма интересны:

Шаг      Значение             Погрешность

1       3.5                   0.25


2       3.464285714285714      0.00127


3       3.464101620029455      3.3890E-8


4       3.464101615137754      2.392873369E-17


Результат: √12 = 3.464101615137754


Как можно видеть, сделав всего 4 шага, можно получить √12 с достаточной точностью, задача вполне посильная даже для ручных расчетов 15 века.