Рассказы о математике | страница 6



предложил первый математический метод вычисления числа Пи, с помощью расчета вписанных в круг многоугольников. Это позволяло вычислять значение не «напрямую», с циркулем и линейкой, а математически, что обеспечивало гораздо большую точность. И наконец в 3-м веке нашей эры китайский математик Лю Хуэй придумал первый итерационный алгоритм — алгоритм, в котором число вычисляется не одной формулой, а последовательностью шагов (итераций), где каждая последующая итерация увеличивает точность. С помощью своего метода Лю Хуэй получил Пи с точностью 5 знаков: π = 3.1416. Дальнейшее увеличение точности заняло сотни лет. Математик из Ирана Джамшид ибн Мас‘уд ибн Махмуд Гияс ад-Дин ал-Каши в 15-м веке вычислил число Пи с точностью до 16 знаков, а в 17-м веке голландский математик Лудольф вычислил 32 знака числа Пи. В 19-м веке англичанин Вильям Шенкс, потратив 20 лет, вычислил Пи до 707 знака, однако он так и не узнал, что в 520-м знаке допустил ошибку и все последние годы вычислений оказались напрасны (в итерационных алгоритмах хоть одна ошибка делает все дальнейшие шаги бесполезными).


Что мы знаем о числе Пи сегодня? Действительно, это число весьма интересно:

Число Пи является иррациональным: оно не может быть выражено с помощью дроби вида m/n. Это было доказано только в 1761 году.

Число Пи является трансцендентным: оно не является корнем какого-либо уравнения с целочисленными коэффициентами. Это было доказано в 1882 году.

Число Пи является бесконечным.

Интересное следствие предыдущего пункта: в числе Пи можно найти практически любое число, например свой собственный номер телефона, вопрос лишь в длине последовательности которую придется просмотреть. Можно подтвердить, что так и есть: скачав архив с 10 миллионами знаков числа Пи, я нашел в нем свой номер телефона, номер телефона квартиры где я родился, и номер телефона своей супруги. Но разумеется, никакой “магии” тут нет, лишь теория вероятности. Можно взять любую другую случайную последовательность чисел такой же длины, в ней также найдутся любые заданные числа.


И наконец, перейдем к формулам вычисления Пи, т.к. именно в них можно увидеть красоту числовых взаимосвязей - то, чем интересна математика.


Формула Лю-Хуэя (3й век):



Формула Мадхавы-Лейбница (15 век):



Формула Валлиса (17 век):



Формула Мэчина (18 век):



Попробуем вычислить число Пи по второй формуле. Для этого напишем простую программу на языке Python:

sum = 0.0

sign = 1