Гильберт. Основания математики | страница 4
Об австрийском логике Курте Гёделе заговорили, когда в 1931 году он объявил: чтобы доказать непротиворечивость математики, методов Гильберта недостаточно. Теоремы Гёделя о неполноте стали ушатом холодной воды для самого Гильберта и его последователей. Более того, они означали крах его программы. Оказалось, что непротиворечивую устойчивость математики невозможно доказать. Непоколебимая убежденность в том, что математика — самая надежная из наук, вылилась для многих в историческое коллективное разочарование. Математика несет в себе черты неуверенности, случайности и необоснованности, но тем не менее продолжает прогрессировать.
Гильберт олицетворял идеал математика межвоенного поколения. Его влияние прочитывается в современной математике — аксиоматической науке, изучающей абстрактные структуры. Она порвала с математикой прошлого, которая была сосредоточена на числах, формулах и фигурах, изначально ее составлявших.
Давид Гильберт определенно являлся ученым-универсалом, поскольку знал почти все ответвления современной ему математики, и оказался последним представителем этого уже исчезнувшего вида.
1862 Давид Гильберт появляется на свет в городе Кёнигсберге, Пруссия.
1880 Начинает изучать математику в Кёнигсбергском университете. Зарождается его дружба с Адольфом Гурвицем и в особенности с Германом Минковским.
1888 Его первая крупная математическая победа: он решает проблему Гордана в теории инвариантов.
1892 Становится ординарным профессором в Кёнигсбергском университете. Женится на Кёте Ерош.
1895 Благодаря стараниям Феликса Клейна становится профессором Гёттингенского университета.
1897 Публикует «Отчет о числах», сборник актуальных знаний в области алгебраической теории чисел.
1899 Публикует «Основания геометрии», в которых представляет все возможные геометрии посредством исключительно аксиоматического метода.
1900 Читает знаменитую лекцию «Проблемы математики» на II Международном конгрессе математиков в Париже.
1904 Возрождает принцип Дирихле для вариационного исчисления.
1912 Собирает в монографию все свои статьи об интегральных уравнениях, используемых физиками того времени, а также набор инструментов развития квантовой механики с 1925 года.
1915 Соревнуется с Альбертом Эйнштейном в выведении уравнений поля общей теории относительности.
1922 Практически в одиночку вновь пробуждает интерес к основаниям математики, стремясь доказать непротиворечивость классической математики, чтобы нейтрализовать скептицизм интуиционистов.